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ABSTRACT

The recent trend of using fine water mist systems to replace the legacy HALON-
1301 fire suppression systems watrants further study into other applications of the water
. mist systems. Preliminary research and investigation indicates that fine mists (20-25 pm
droplet size) may reduce peak overpressures of a shock wave traveling through a space.
Such pressure reductions could be used to mitigate the destructive effects of a shock wave
(initiated by an explosive device) traveling through a structure.

Currently these blast mitigation effects have only been demonstrated in small-scale
shock tube tests and computer simulations. Uncettainty exists as to the scalability of such a
system. 'The intention of this research is to investigate the applicability of such a blast
mitigation system for shipboard use. Study into the degree of mitigation necessary to make
a system practical for shipboard installation was conducted. In addition, a theoretical study
of the mechanisms of blast mitigation using water mists was completed.

Preliminary design of a full-scale system was examined. Given the recent trend
toward tumblehome hull forms in future Naval Combatant designs, there exists strong
applicability of this system in the “dead” spaces created by the shaping of the tumblehome
hull.  Further work is needed in numerical modeling and labotatory testing of specific
phases of the mitigation. The end goal is a feasible design of a blast mitigation system to be
used in the outermost spaces of Naval Combatants to protect intetior vital system spaces.
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NOMENCLATURE

DDS: U.S. Navy Design Data Sheets. Contain construction and petformance
tequirements and guidelines for U.S. Navy ships. :

GenSpecs: U.S. Navy General Specifications for construction and performance of
U.S. Navy ships.

~ Sutvivability: Concept that includes all aspects of protecting personnel, weapons,
and supplies while simultaneously deceiving the enemy.

ODS: Ozone Depleting Substance.

ODP: Ozone Depletion Potential.

CFC: Chlorofluorocarbon, a common refrigerant.

CPSMA: Commission on Physical Sciences, Mathematics, and Aéphcations.
T,: Particle equilibration time.

m: Individual particle mass.

T: mass loading ratio.

P: Peak incident overpressure. Peak pressure in the incident shock wave.

P,: Ambient atmospheric pressure.

P;: Maximum reflected overpressure. Peak pressure due to additive effect of

" incident and reflected shock waves.

q,: Dynamic pressure. Accounts ffor dynamic effects of pressure pulse duration.
P,: Stagnation pressure. Static equivalent pressute including d&namic effects.

T: Duration of positive phase of pressure pulse.

Z: Scaled blast range.

W: Weight of explosive for blast calculations.



p: Ductility factor. Used in DDS 100-9 to account for allowable plastic
deformation levels.

: : R,: Panel resistance in pounds force. Used in DDS 100-9 to evaluate stiffened
® ' panel design. )

o,: Plastic ﬂow s&ess

M,: Plastic collapse moment

O oayn* dynamic yield stress

€40 Strain rate (= rupture strain/pulse time)

L: Frame spacing. Horizontal length of stiffened panel.

)
H: Plate thickness.
B: Stiffener spacing or deck height.
Py PVLS: Peripheral Vertical Launch System




INTRODUCTION

-

Central to the strength of a naval force is its ability to sutvive and continue to fight
through a battle situation. The United States Department of Defense Dictionary of
Military Terms defines survivability as “a concept that includes all aspects of protecting
personnel, weapons, and supplies while simultaneously deceiving the enemy.” The ability
of a system to retain functionality in a damaged state is central to the concept of
survivability and therefore is a primary concern in the design of naval combatants. The
protection of personnel and equipment from battle damage is essential to the effectiveness
of a ship. Warships must be designed with inherent resistance to hull and shipboard system
damage inflicted under battle conditions. Part of this protection includes methods of
strengthening the structure of the ship to resist damage from blast-type loading. The
stronger the ship, the more likely it is to sutvive battle damage and continue its ability to

fight in a damaged condition.

Strengthening ships to blast loading is traditionally achieved through enhanced
structural design, but can include measures to mitigate the peak overpressures and loads
placed on a ship by shock impingement. Water mists have been shown to achieve a degree
of mitigation of blast shocks in a confined space, namely a reduction in the velocity and
peak overpressure of the impinging shock wave. The potential application of this feature of

water mists to U.S. Naval combatants is presented in this study. ‘

Ship Design for Blast Resistance

There are obvious trade-offs to batfle hardening of Naval assets. A]locéting
significant amounts of weight and spacé to armor plating ot blast-resistant structures will
cost in speed, efficiency, endurance, and overall effectiveness of the platform. In the days
before technologically advanced radars and guided weapons, armor plating was essential to
ship design since major threats included ship-to-ship gunfite and close-in ballistic fire.
However, tecent years have tutned the focus on creating ships with low signatures and

small radar cross sections to make targeting by enemies more difficult. To accomplish
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these goéls, ships must appear small and quiet, often conflicting design features to side-hull
protection. Modern warships are also filled with the sensitive electronic equipment
fequited to compete in today’s high-tech arenas. These ships contain a much higher ratio
of combat system equipment weight to ship structural weight in compatison to naval
combatants of the past. The next generation of ships is entitely electric and must carry a
previously unheard of amount of electrical generation and distribution equipment to
complete their required missions. They will operate in an environment where the force that
can conduct the best surveillance, advanced warning, and precision strike missions will

dominate the field. This means that ships must be fast, technologically advanced, and

robust.

As technologically advanced next-generation ships ate designed to meet the
computing and combat systems needs of the future, the concept of survivability in ship
design has changed. Battle-hatdening no longer means the ability to withstand hits from
explosive shells. Ships a.fe designed to project power far away and detect and combat
threats from eciually long distances. As a result, heavy armor has been traded for high-tech
detection and engagement systems. However, the close-in threat has not idisappeared. The
most dauntiﬁg threafs to the new generation of ships are from undetected, fast moving
cruise missiles and unexpected tetrorist plots. Ships are designed to kéep a full operational
picture of an entire battle space, so the threat of direct fite from another surface combatant
or strike from an air asset is minimized. The new dangers to these ships are non-traditional
wat fighting scenarios such as small boat attacks when opetating in pott or in vu]nérable
situations close to shore. This close-in threat is evidenced by the attack on the USS COLE
(DDG-67) in the pott of Aden, Yemen on October 12, 2000. . i

USS COLE was performing a routine refueling operation in a protected hatbor
when a small vessel appearing to be a tender pulled alongside. An explosion detonated on
the small vessel caused extensive damage to the ship. Unofficial estimates state that the
explosive charge was equivalent to approximately 400-700 pounds of TNT. It was
detonatéd along the waterline at a standoff distance of 0 to 10 feet from the hull. The

explosion caused a 40 foot by 45 foot hole in the port side of the ship extending below the
10



watetline. Two longitudinal watertight subdivisions were breached, exposing the intetior of
the ship to fire and flooding damage well past centetline. Figure 1 is a photograph of the
damage to the port side of the USS COLE, revealing the blast damage to the side hull of

‘the ship. The resulting damage crippled the state-of-the-art Arleigh-Burke class destroyer

and instigated a close look at methods of mitigating the damage caused by such attacks to

Naval vessels.

Figure 1: Port Side Damage to USS COLE (Photo from U.S.
Navy Information Office)

In a case such as the explosion alongside the USS COLE, the teating of the hull
and subsequent travel of the explosive shock wave through the ship infrastructure resulted
in a complete loss of power and propulsion capabilities, along with significant injury and
loss of life to personnel. A method of mitigating the spread of the shock wave through tile
ship might have isolated the damage to the outermost. spaces adjacent to the blast,
protecting the inboard engineering spaces.. Preserving the integtity of these vital spaces
would allow continued operation of propulsion and electrical generation engines and

maintain war-fighting capabilities.

Arleigh-Burke class destroyers such as USS COLE are not equipped with specific

side-hull protection systems. They are designed to withstand the necessary ship loads in

~accordance with U.S. Navy Design Data Sheets (DDS). DDS’s ate design guidelines that
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outline a systems-based approach to the mitigation of ‘damage for ship structures. They
were developed using classified explosive deformation and failure studies for naval vessels,
empirically based on data accrued through years of live fire tests conducted by the Office of
Naval Research (ONR). The blast loading guidelines in these documents are primarﬂy‘
- concerned with protecting the ship from the stresses produced by own-ship weapons
systems and hull dynamic loading. For example, there are requirements to design
bulkheads and decks to withstand the loading of the overpressure from a gun barrel firing
ot from the impingement of missile rockets as they launch. Howevet, there are no specific
requirements for U.S. Navy ships to have armor plating or blast protection to withstand
damage from outside sources other than nuclear overpressures. Blast protection or

mitigation capabilities, if installed, are merely design features of the specific platform.

The next generations of U.S. Navy destroyers, DD(X), are designed with a bit
more side-hull protection as a consequence of the location of their missile launchers.
DD(X) has a tumblehome hull form; the sides of the hull slope inward from a maximum
beam below the waterline. Vertical launch missile cells are positioned directly inboard of
the side hull in this design, creating a dead space outboatd of the missiles due to the slope
of the hull. In order to protect the ship from damage due to unintentional detonation of
the missiles housed in these launchers, current design uses reactive armor and heavy plating
inboard of the launcher. This design is necessary to protect the ship, but costly in terms of

space and weight.

~ An alternative means to partially reduce blast loading on the side hull of DD(X)
could produce significant savings for the ship design. Blast mitigation would need to be
petformed with minimal impact on major ship systems, preferably using extensions of
cutrently installed systems. Water mists are currently being used as fire suppression systems
on the next-generation destroyer and future U.S. Naval combatants. It appears that some
degree of mitigation may be achieved by proper application of water mist to a space prior
to the propagation of a shock wave. Thetefore, the feasibility of using water mist to

mitigate blast damage must be investigated.
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HALON Replacement and Water Mist

Current U.S. Naval combatants primarily rely on HALON-1301 as a space flooding
fire protection system for vital shipboard spaces such as engine rooms. Halons are low-
toxicity, chemically stable compounds that have been used for fire and explosion protection
throughout this century. HALON-1301 (a gaseous agent) is used rhajrﬂy in total flooding
fire suppression systems. Halons have proven to be extremely effective fire suppressants,
which are clean (leave no residue) and remarkably safe for human exposure. They wotk by

breaking the chain reaction requited for a fire to butn unabated.

Three things must come together at the same time to start a fire. The first
ingtedient is fuel (anything that can burn), the second is oxygen (normal breathing air is
ample) and the last is an ignition source (high heat can cause a fire even without a spark or
open flame). Traditionally, to stop a fire you need to remove one side of the triangle - the
ignition, the fuel or the oxygén. Halon adds a fourth dimension to fite fighting - breaking
the chain reaction. It stops the fuel, the ignition and the oxygen from dancing together by
chemically reacting with them. Many people believe that Halon displaces theé air out of the
area it is dispensed in, but this is false. Even for the toughest hazards, less than an 8%
concentration of Halon by volume is required. There is still plenty of air in the space for

personnel to use during the evacuation process.

Under the Clean Air Act (CAA), thevU.S. banned the production and impott of
virgin HALON-1301 beginning January 1, 1994 in compliance with the 1987 Montreal
Protocol. The Montreal Protocol placed a ban on the production of ozone depleting
substances (ODSs) for industrialized nations in January 1996. A compound’s ability to
destroy ozone depends on many factors, including the amount of chlotine and/or bromine
that it contains. To aid them in comparing compounds, scientists have developed 2 relative
scale called the ozone depletion potential (ODP). Chlorofluorocatbons (CFCs), the
common refrigerants found in refrigerators and car air conditioners, have been assigned the
value 1 as a reference. HALON-1301 has the value between 10 and 16, meaning it has 10—
16 times the more potential for destroying the ozone layer. Halon use wotldwide is

significantly less than that of CFCs, so even though it is more damaging to the ozone layer,
13



there is not as much of it released into the atmosphere. In fact, it is estimated that overall
Halons account for less than 20% of ozone depletion. Recycled Halon and inventories

produced before January 1, 1994 are now the only soutces of supply in the United States.

‘There are a number of traditional fire extinguishing agents, such as water, carbon
dioxide, dry chemicals, and foam that ate good alternatives to Halons for many
applications. In addition, recent research has led to the commercialization of new agents
and technologies. These fall into four basic categories: halocarbon compounds, inert gas
mixtures, water-mist or fogging systems, and powdered aerosols. The (growing list of
alternatives to Halon, in conjunction with advanced detection and fire resistant materials,
provides protection from a broad spectrum of potential hazards. Howevet, matching a

fire-fighting agent to the specific uses required in confined areas on combatant ships poses
a difficult problem.

The Navy has attempted to identify non-ozone depleting alternatives to fill the role
of HAT.ON-1301 fire suppression systems. Many inert gas mixtures operate von the
principal of oxygen displacement, quickly turning a confined space into a suffocation zone
for escaping personnel. Dry chemical agents tend to be very cotrosive to electronic
equipment, causing significant damage in a shipboard envitonment. Traditional foam and
water flooding systems are quite effective, but application must be limited due to stability
considerations on a ﬂoaﬁng platforrn.v Water mist systems seem to be the best-suited

replacement for Halon flooding systems on U.S. Navy combatants.

The U.S. Navy has developed a machinery space water mist system that utilizes a
modified high-pressure spray nozzle. According to the Commission on Physical Sciences,
Mathematics, and Applications (CPSMA) (1997), the system is designed to produce high
volumes of 100 pm droplet (mean diameter) sprays with very high spray momentum to
achieve rapid suppression of large hydrocarbon pool ot spray (Class B) fires. These nozzles
emit 2 gpm at 1000 psi on a grid system. This system produces water flow application rates

of 0.06 —0.07 gpm/ft, three to four times higher than commercially available systems.

14



Blast Mitigation using Water Mist
The recent trend of using fine water mist systems to replace the legacy HALON-
1301 fire suppression systems warrants further study into other applications of the water

mist systems. Preliminary research by the Naval Research Laboratories indicates that fine

mists (20-25 pm droplet size) may reduce peak overpressures of a shock wave travé]jng
through a space. Such pressure reductions could be used to mitigate the destructive effects (
of a shock wave (initiated by an explosive device) traveling through a structure. Although
the mitigation effects are not observed to the same extent for droplet sizes in the 100 pum
range used in the current U.S. Navy water mist system, modification to smaller nozzle
apertures such as those used on many commetcially available water mist systems could

make such a system feasible for installation on ships.

Cutrently these blast mitigation effects have only been demonstrated in small-scale
shock tube tests (Outa et al (1976) and Sommerfield (1985)) and ‘computer simulations
(Schwet et al (2002 & 2003)). Uncertainty exists as to the scalability of such a system. The
intention of this research was to fully investigate the applicability of such a blast mitigation
system for shipboard use. A theoretical study of the mechanisms of blast mitigation using
water mists was undertaken to explain the phenomena and possible methods of scaling and
application. Current research into water mist blast mitigation was thoroughl;lr reviewed and
examined for trends to aid in guiding the direction of future work. In addition, a study of
the degree of mitigation necessary to make a system practical for shipboard installation was

conducted, including a close look at the calculation of failure loads for stiffened panels.

These trends provide necessary information to begin design of a scalable blast
mitigation system with applicability to real-wotld shipboard spaces. Given the recent trend
- toward tumblehome hull forms in future Naval Combatant designs, there exists strong
applicability of this system in the “dead” spaces cteated by the shaping of the tumblehome
hull. The end goal is a feasible design of a blast mitigation system to be used in the

outermost spaces of Naval Combatants to protect intetior vital system spaces.

15



SHOCK STRUCTURES IN GAS-PARTICLE MIXTURES

The first phase of investigating the use of water mists for blast mitigation involves -
studying the dynamicsb of the mist-ait mixture in’ the presence of a,blast or shock wave. In
order to understand the phenomena obsetved in shock tube tests and numerical
simulations, the governing dynamics of gas-particle mixtures wete studied and applied to
the specific case of a water mist. Although a complete theotetical explanation of the blast
mitigation effects observed when a shock wave passes through a water mist — air mixture
does not exist, the phenomena can be at least partially explained by further study into the

dynamic interaction of pressute waves and gas-particle mixtures.

The interaction of a shock wave with a mixture of water mist and air is 2 complex
time and space dependent process. Understanding this interaction requires the use of
simplifying assumptions to identify the properties of the gas mixture. The dynamics of gas-
particle mixtures are heavily studied for léw Mach number processes in works such as Clift
et al (1978) and Crowe et al (1998). These studies employ the basics of fluid dynamics such
as the Navier-Stokes equations for slow viscous flows, modified to include particle mixtures
and interactions of heat and mass transfer for patticles of various shapes and sizes. Crow et
al (1998) develop particle interaction models, phase equations for multi-dimensional flows,
and droplet-particle cloud equations from both a Lagrangian and an Eularian approach.

These equations are then used as the background for numerical modeling techniques for a

variety of multi-phase flows.

Energy Methods

Part of the numerical modeling involved in the above studies includes work to
model evaporating droplets in sprinkler fire supprgssion systems. This includes energy
equation modeling for individual droplets including convective and radiative heat ﬁansfer.
Heat transfer could represent a significant portion of the total energy absorption
encountered in the blast mitigation process, although the time dependency of the heat

transfer process is likely to limit its effects when dealing with short duration blast pulses. It
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is speculated that the time necessary to allow for heat transfer to occur to the mist particles
is significantly greater than the time for the shock front to pass. The effects of heating and

vaporization of the water mist are likely to play a major role in the cooling and fire

suppression achieved, but not i the mitigation of blast ovetpressures.

To further investigate the role of vapotization and heat transfer, an energy method
was used to compare the energy requited to heat and vapotize a unit volume of mist with
the energy of the impinging shock wave. The heat of vaporization of fresh water is used to
calculate representative energy absorption for vaporizing one cubic meter of watet mist at
room temperature. Appendix A contains the calculations demonstrating that for 25 pm
watet mist, using the U.S. Navy standard design mist concentration, 6 mega joules (M]) of
energy are required to vaporize one cubic meter of mist from room temperature. The
energy of the shock wave is calculated by integrating the pressure of the wave over time and
multiplying by the speed of wave propagation. In this case, the shock wave is assumed to

propagate at the speed of sound. The energy of the tepresentative shock wave used is

0.239 M]J per square metet.

/ Remaining

shock energy
out

Control Volume
(mist filled)

| >

tm
~ . S /

\\/

] Mist energy per
unit volume

Shock energy in

Figure 2: Simplified Energy Flux for Unit Volume

A net energy is calculated by multiplying the energy of the shock wave by the unit
area over which it impinges and subtracting the energy of the unit volume of mist from this

quantity. The result of this calculation is a negative energy, indicating that if the mist wete
' 17 ‘



in fact vaporized to absorb the shock energy, the shock would be corﬁpletely dissfpated.
Experimental results show that' this is not the case, supporting the theory that the
mitigation effects observed are not primarily caused by vaporization. Schwer et al (2003)
provide further validation of the assumption that this vapotization energy is not a major
contributor to the net mitigation effects through numerical simulations described later in

this report.

Gas-Particle Dynamics

Investigation of the mechanics of shock propagation in an air-water mist mixture
provides a background for understanding the mitigation achieved. Marble (1970) develops
a relevant discussion of the mechanics of heterogeneous media for this study. In
developing constitutive equations fot mixed media, yhe makes a series of profound
assumptions. Although each assumption is essential to the development of an anélyﬁcal
solution for a complex, mixed-media problem, it is likely that many of the phenomena
causing>the mitigation effects in water mist are eliminated from the analysis through these
assumptions. Therefore, a careful look at Marble’s assumptions and their repercussions is

essential to understanding his development and its applicability to the problem at hand.

Matble’s first major assumption is that the volume fraction of the solid-particle or
droplet cloud is considered to be so small that interaction between individual particles may
be neglected or simplified. Since the mass loading experienced for fine water mist is
relatively small, this assumption is not likely to invalidate Marble’s conclusions for this
problem. Detailed transport processes between particles and gas are considered to be
independent from the dynamic problem. Factors not considered in this analysié yet
relevant to mist mitigation include the impact of particles on walls, and the effects of

particle settling due to gravity. Marble considers the gas to behave as an ideal gas.

A viscous stress tensor exists for gas only and is considered undisturbed by the
presence of the particles. The volume fraction of the particles is considered negligible.

This assumption allows omitting the Einstein cotrection from continuity equations. Marble

uses a “smoothing” assumption for the continuum variables of the gas. Gas velocities and
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temperatures vary strongly in the immediate vicinity of a particle moving through and
exchanging heat with the gas, but for the purposes of continuum equations, values are used
which are avefaged over a gas volume containing several particles. This assumptioh
essenﬁaﬂy mandates that all particle wakes and regions of immediate influence be dissipated
very rapidly over the gas volume considered. The phenomena of particles forming groups
and traveling in one another’s wakes ate not accounted for under these assumptions,

although this grouping is not likely to play a major role in pressure reduction or energy

absorption.

To model the processes of drag and heat transfer for a coupled particle/gas cloud,
the Reynolds and Mach numbers determine a regime for the flow and the corresponding
governing equations. Generally, numerical solutions ate requited unless the flow falls into a
clear-cut regime such as Stokes flow, quadratic flow, or hypetsonic flow. By limiting the
analysis to a single regime, the limits of the approximation can be cleatly defined and
analytical solutions obtained. Marble assumes that Stokes flow and a Nusselt number of

one describe particle drag and heat transfer.

Appendix B shows the derivation of the governing equations for particles of radius

G moving in a gas of viscosity p. Included in this derivation is a definition of the
characteristic time, shown in Equation 1 below. This is the time required by a particle to
reduce its velocity relative to the gas by e of its original value in an unaccelerated state.
=n

6-n-0-p ’ )
T, = characteristic time of particle

m = mass of individual particle
G = particle radius

Tv

} = gas viscosity
This equilibration time can be compared with the charactetistic time (t) for the flow
to further characterize the gas-particle interaction. For example, if tQ>>1:y, the particle
moves through the flow field in a time scale short enough that the motion of the particle

does not alter appreciably. In this case, the particle motion is dictated almost exclusively by
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its state before entering the system, independent of the properties of the gas. For the
opposite case, when T,<<t, the particle adapts to the local motion of the gas vety quickly
upon enteting the system and moves only a very short distance before gaining equilibrium
with the gas. In this case, the particle motion is relatively independent of its previous

history and largely dependent on the motion of the local gas.

The thermal behavior of the gas-particle mixture follows similar patterns to the -
kinetic phenomena desctibed above. The structure of a normal shock wave exists in the
region between complete equilibrium of gas and particles and the complete independence
of gas and particles described above. Complete eqﬁi]ibrium exists both ahead of and
behind the normal shock, a necessity of continuity. Thetefore, conservation relations apply
across the shock in terms of the modified gas propetties for the gas-particle mixture
described in Appendix B. The only deviation from this is that the existence of the shock
stru/ctm:é is based on the upstream Mach number computed from the true gas properties,

not the modified mixture propetties.

The shock structure itself consists of a gas-dynamic shock followed by 2 relatively
thick z)one in which equilibration processes take place. In otrder to sepatate these two
zones, the relaxation time of the particles must be long compated to the molecular collision -
time of the gas. This assumption is reasonable since telating these two time quantities
involves forming a ratio of the particle substance density to the density of the base gas. For -
fresh water mist in air, this ratio is high enough to allow significant leeway in the other
factors involved such as particle radius and mean free path yet stll meet the requirements

of the assumption.

Marble postulates that the gas-dynamic shock structure is unaffected by the particle
cloud, though the shock may be thin relative to the particle radius. Because the volume
fracu'oﬁ of the particles is negligible, at any time less than 1% of the shock front is being
punctured by particles. Therefore, the patticles pass through the shock front unaffected by

the shock and retain their initial conditions upon entering the equilibration zone.
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It is in this equilibration zone where Marble postulates the particles have their
greatest effect. The relaxation lengths (obtained by integrating particle speed over the
relaxation time) for\ both vé:locity and temperature determine the thickness of the
equilibration zone. The thickness of this zone subsequently detetmines the shape of the
exponential decay following the shock front. The genera]izéd shape behaves as exp[-
x/(M;A)] whete M, is the localized Mach number in the equilibration zone and A is the
total relaxation length of the gas-particle mixture for either velocity or temperature

equilibration. So/lutions for A include a first order dependence on the relaxation length of

the particles and a series of terms including a factor of 1), the particle mass loading, which
represent the gas-particle interaction. Figure 3 shows the spatial structure of the relaxation
zone. It can be observed that the effect of the particles essentially extends the equilibration

zone, allowing more time and space to dissipate the shock energy.
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Figure 3: Spatial Structure of Shock Relaxation Zone (Marble (1970))

To this point, no consideration is given to the effect of different sized particles and
collisions between particles. ‘As long as the expected time between collisions of particles is
equal to or longer than the equilibration time for the particles, a patticle will essentally lose

the scattering velocity obtained through a collision encounter befote it expetiences another
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collision. This assumption simplifies the pfoblem by always considering the starting

conditions to be equivalent to the equilibrium slip condition.

Sommerfield (1985) discusses the decay of incident shock waves upon encounteting
gas-particle mixtures from both a velocity and a peak pressure standpoint. The general
premise is that shock waves initiated within or prop:igating into a gas-particle mixture will
have differing characteristics from the pure gas case due to the inertia and heat capacity of
the particles. There exists a transition region as a shock wave encountets a gas-particle
mixture where the velocity of the shock wave cha.nges from the initial value to a lower,

equilibrium value.

Building on the work of Marble (1970), Sommerfield also develops “equivalent gas”
properties for the gas-particle mixture based on the loading ratio (by mass and specific heat)
of particles to gas. Depending on the properties of the gas-patticle mixture, the shock wave
is refracted and reflected (as a shock or a rarefaction wave) at the interface. For the case of
ship geometry and a water mist filled space, this interface coincides with a breached
bulkhead or portion of ship hull, so the shock front would also be modified due to the
geometry of the hull as it deforms.

The velocity equilibration zone following a shock is extended by the presence of a
gas-particle mixture. Due to the heat capacity and inertia of the particle or droplets in the
mixed media, the velocity of é transmitted shock wave does not change instantaneously. A
transition region develops whete the shock velocity is slowly redﬁced from its initial to its
equilibrium value obtained from the equivalent gas analysis. During this deceleration
process, peak pressutes in the shock front are increased slightly due to basic Bernoulli flow
- considerations. As velocity decteases, pressute must increase to maintain equilibrium. This
pressure increase occurs before equilibration of the gas-patticle mixture begins to dissipate

the energy of the shock front.

In terms of mitigation effects, the reduction in velocity represents a reduction in the

overall strength or energy of the shock front. Although it is not instantaneous, if the
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velocity of the shock is reduced prior to the next impingement on a structure, the energy of
the wave on this structure is effectively reduced. However, enough time and space must
elapse to allow the enhancement of peak pressures due to the shock deceleration to pass
before mitigation effects take over and peak pressures are reduced. The depth of mist
necessar}; to achieve mitigation and not enhancement must be quantitatively defined to

propetly design a mitigation system.

These theoretical developments help to explain the phenomena recorded from
Outa et al (1976) and Sommerfield (1985) from shock tube testing. The results of these
testé and numerical simulations by Schwer et al (2002 & 2003) provide background of the
mitigative effects of water mist. The next section studies previously published experimental

and numerical results and places them in the context of the water mist-air mixture behavior.

Experimental Results

Outa et al (1976) measure the time history of a shock wave initiated in the pure gés
section of a shock tube and subsequently interacting with a dusty gas and decaying through
the mixture until equilibrium is achieved. A graphical tepresentation of the decay of the
shock wave as it moves through the heterogeheous zone of 2 shock tube test is shown in
Figure 4. The bend in the shock front on this time versus distance plot represents the

slowing of the wave propagation as the mixed media is encountered.
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Figure 4: Wave Diagram of Shock Tube Flow Showing Decay of Incident
Shock Front Through Gas-Particle Mixture (Outa et al (1976))
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A particle loading ratio of less than two consisting of 3-9 pum diameter white carbon

particles are used in these shock tube tests. The loading ratio for the current U.S. Navy
water mist fire suppression system is 2.0. Therefore, this loading ratio has good
applicability to the water mist problem, although the mist droplets ate significantly larger
than these particles. Through testing and theotetical calculations, Outa establishes trends
for the effects of particle diameter on pressure, temperature and velocity. These results are
shown in Figure 5 below. The pressure plot in this figure is the most relevant to this
problem. Particle sizes below 15 pm appear to delay (in a spatial sense) the artival of the
peak pressure but do not appear to cause a significant decrease in the peak‘ pressure itself.

Howevet, for the 30 pm particle size, the pressute equilibrium value seems to be lower than

for the other cases, indicating a mitigation effect.
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Figure 5: Effect of Particle Diameter on Temperature, Velocity, and Pressure
(Outa et al (1976))

Outa conducted shock tube tests for vatious mass loadings. Figufe 6 shows plots
of the shock as it passes various locations along the length of the seeded section of the
shock tube. The traces show a discontinuity in the leading edge of the pressure trace as the
shock front passes the sensor. This is representative of the steep pressure increase at the
start of the shock wave. Compating the traces along the 2 meters of shock tube accounted
for by the various traces shows the weakened pressure wave passing through the gas-

particle mixture. The mitigating effects of the patticles ate obvious from the pressure drops
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observed between the four traces in each plot series. The total mitigation due to the mixed
media is represented by the difference in the pressure between the upper left-most trace"
and the lower right-most trace in each row of plots. These traces are from the x locations
cottesponding to the start and end of the mixed-gas section of the shock tube. The three
rows represent three different mass loading cases at slightly different Mach numbers. The
- low mass flow loading case (1, = 0.6, top plot) shows thé least mitigation, teducing the

peak pressure by about 20% over the length of the test section. In contrast, the n, = 2.1

case shows a reduction of the unmitigated shock pressure by 30%.
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Figure 6: Pressure Traces Showing Variations of Wave Form Along Tube
(Outa et al (1976))

To better demonstrate the pressure reductions achieved by the gas-particle mixture,
Outa plots the experimental results of the shock pressure against the expected, unmitigated
shock structure. Figure 7 shows the experimental pressure trace and calculated stationary

wave forms at a section where the leading front is still decaying. The experimental
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ptessure, as indicated by the open citcles, approaches an equilibtium value behind the
shock front. This pressure is significantly lower than those calculated for stationary waves.
The peak pressure is again reduced by about 30% from the expected pressure prior to the

shock encountering the gas-particle mixture.

Prz /b, (Msme)

8 82 0.4 68 68

ty-2e=1,53m T-tg msee

Figure 7: Experimental Pressure Trace and Calculated Wave Forms (Outa et al (1976))

Sommetfield (1985) repeats many of the experimental results presented above using
a similar shock tube arrangement. These experiments were conducted using glass sphetes
with a median particle diameter of 27 um rather than carbon dust as above. The particle
size used by Sommerfield duplicates a feasible droplet size for water mist systems using
cutrent nozzle technology. The droplet size for a mitigation system must be optimized to
achieve the desired rnitigétion effects for a given systerh design. The choice of droplet size
for the proposed mitigation system will be discussed later in this report. However, it is
noted ag this vpoint that the particle size used in Sommerfield’s experiments corresponds
directly to the proposed droplet size for a water mist mitigation system. In addition, the
density of the glass spheres used is not significantly different from the density of a fresh
water mist droplet. The resulting pressure traces, shown in Figures 8 and 9 below, clearly

demonstrate the mitigating effects of the particle mixture used by Sommerfield.
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Figure 8: Pressure Traces for My, = 1.49, 1 = 0.63 (Sommerfield (1985))

The first experimental results shown are for a mass loading ratio of 0.63. Figure 8
shows a total of 8 pressure traces, representing 8 locations along the seeded portion of the -
shock tube. The numbers on the left side of the trace show the zero mark (pre-shock
pressure) for each location as a reference point. The pressure jump as the shock passes
causes a shatp discontinuity in the pressure trace from this initial value to the rno?e readily
6bserve_:d trace above. 'I;he first notable feature on the plot is the decay of the sharp shock
front as it moves through the gas-particle mixture. This decay is evén more evident in
Figure 9, the results of a similar experiment at a mass loadhg ratio of 1.33, over double the

loading shown in the previous result.




Figure 9: Pressure Traces for My, = 1.127, 1) = 1.33 (Sommerfield (1985))

The decay of the shock front observed in these traces represents the effects of the
deceleration of the shock wave as it encounters the gas-particle mixture. The net effect of
this velocity reduction is observed in the pressure traces as 2 delay in the arrival of the peak

~overpressute from the shock. Rather than an instantaneous increase to peak pressure
followed by decay as observed in a pure gas, the pressure increases more gradually in the

seeded gas, resulting in a delay in the atrival of the peak pressure.

The distance'between the first and last pressure gauges recorded in these plots is
approximately 4 meters. The peak pressure between these traces is reduced by 28.6% for
the lower mass loading case. A reduction by 20% results between the first and the 4*
sensof, a distance of 1.25 meters. For the high mass loading case, the total reduction over
the length of the tube.is slightly lower than that for the lower mass loading case. The decay
of the shape of ‘the shock front is greater for this case, but it appears that the lower mass
loading provides better overall pressure mitigation characteristics. This obsetvation
correlates to the theoretical developmenlc of the deceleration zoné presented in the previous
section. The higher mass loading causes more deceleration of the shock front, extending

this zone of the overall structure and therefore extending the pressure enhancing zone and

leaving less time for pressure mitigation to occur before the system reaches equilibrium.
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Compared to the ratios studied by Sommetfield (n=0. 63 1.33), current U.S. Navy

water mist systems provide higher mass loadings (n=2.0) of water. Scaling this mass
loading for blast mitigation purposes without sacrificing the back fit capability to current
Navy systems is an impottant factor in making such a system feasible. Recognizing fhat the
mass loading for the current Navy system is much greater than most commercial systems
using smaller droplet sizes, the mass loading is recalculated based on a smaller
concentration of water mist. The concentration is reduced to ¥4 of the cutrent Navy design
based on data from commercial water mist systems and the teduction of the mean mist
diameter applied by a factor of four from the baseline Navy design. This concentration is
more representative of the mist applied through the smaller aperture nozzles needed for
this droplet size. For the purposes of calculating the behaviér of shock waves through a

representative mist-filled space, a mass loading ratio of 0.512 is used.

Based on these experimental and theoretical calculations, mitigation on the order of
30% reduction of the peak overpressure of an impinging shock should be possible. Proper
droplet size and mass loading of the water mist are essential to achieving this mitigation.
For further investigation into the mitigation possibilities of water mists, numetical

‘simulations must be used.
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MITIGATION EFFECTS

As observed by Schwer and Kailasanath (2003), shock tube tests leave many
unanswered questions about the behavior of seeded gases and shock fronts. In
experiments where the driven section and the driver section of the shock tube are of similar
size, the mitigation effects are small. The primary effects observed are a reduction in the
velocity of the shock front, and a reduction of the pfessure at the shock front. The overall
maximum overpressure occurs slightly behind the shock front due to the deceleration of
the shock and the equilibration zone behind the shock. The maximum overpressure,
occurting further back in the shock structure, is initially increased in computer simulations »
of this setup. This effect is due to the “compression” of the shock front due to its

deceleration upon impingement with the seeded gas.

- The constitutive equations presented by Outa et al (1976) and Sommerfield (1985)
were adapted to the specific case of the air-water mist system by Schwer et al (2003). The
result of these calculations is an accuraté numerical modeling tool for use in predicﬁﬁg the
mitigation effects and behavior of a shock wave passing through an air-water mist mixtute.
Integrated into this simulation ate the relevant factors to simulate the use of liquid droplets

rather than the dry particles used in all laboratory testing to date.

Results from Schwer’s simulations indicate that overall mitigation is tied to the
. location of the maximum overprcssﬁre. For shock waves traveling through seeded gases,
the maximum overpressure location no longet coincides with the shock front location due
to deceleration effects. As shown in the experimental results above, at higher mass loading
ratios the sharp shock front decays, resulting in a delay in the arrival of the peak
ovetpressure. From Schwer’s numerical model, Figure 10 provides a distance-time plot
showing the artival of the shock front and the arrival of the peak pressure for a variety of
. particle sizes at a mass loading of 0.5. The split between location of the shock front and
location of the peak overpressure is closely correlated to the particle size. Larger particles

cause a longer delay of the arrival of the peak pressute in these numerical simulation results.
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Schwer’s numerical simulation results shown are well correlated to the pressure traces
shown above. The differential in arrival time of the peak overpressure is easily observed in
Figure. 9, although the correlation presented by the data in Figures 8 and 9 relate to mass
loading ratio, not to particle size. These two factots exhibit the largest influence on the
mitigation charactetistics of a mixed-media and therefore are the main design vatiables for

creating a feasible mitigation system using watet mist.
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Figure 10: Location of Shock Front (solid) and Maximum Overpressure
(dashed) for Different Particle Sizes (Schwer et al (2003))

Although the effects of the seeded gas on the shock wave velocity and shock front
pressure tise are obvious from these experimental and numerical results, the maximum
overpressure initially increases for many cases simulated using this shock tube atrangement.
It is theotized by Schwer et al (2003) that the telative sizes of the dtiver and driven sections
of the shock tube arrangement are the root cause of this increase. The setup used has a
driver section 3.5 meters in length and a driven section 4.0 meters in length, simulating a
‘blast front of the same size as the medium through which it travels. However, explosive
_shocks act much more like a point load in a large medium. The driver section of a real-
wotld explosion is significantly smaller than the surrounding, “driven” section, which
expetiences the effects of the shock front. Therefore, a more realistic model was simulated
| numetically by Schwer using a driver section 1/20" the size of the driven section. |
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The simulations run by Schwer with this more realistic geometry demonstrate a
closer correlation to the actual mitigation levels achieved in a laboratory setting. The
maximum overpressure was measured for a vatiety of particle sizes and plotted as a
function of distance along the seeded gas portion of the tube. The effects of droplet size
on peak overpressure for a bconstant mass loading ratio are shown in Figure 11. From the
plot on the left, the optimal droplet size appears to be between 20 and 40 pm, with the 40
pm droplet size beginning to exhibit a lag in the equilibration time behind the shock front.
The plot on the right demonstrates that the mitigating effects of larger droplets (100 p,m)

such as those used in the current Navy design are not as pronounced as for the smaller

droplet size.
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Figure 11: Snapshots of Pressure Profiles as 5 ms intervals for M, = 1.49, 1 =
0.63 (Schwer et al (2002))

The peak pressure observed just as the shock front crosses into the mixed gas area
is slightly higher than the no-patticles case due to the deceleration of the shock front.
However, the reduction in peak pressure as the shock front travels through the seeded gas
is dramatic. For most particle sizes, the majority of the mitigation of pressure has occurred |
after the shock has traveled through 5 meters of the seeded mixture. The level of
mitigation itself is dependent on particle size. Mitigation appears to increase with particle

size to a maximum for the 25 pm particles. The results for the 60 um particles show a
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slower decay to the maximum mitigation level, although the pressure at a distance of 8

meters is nearly equal to that achieved for the 25 pm particles.

In compating the results presented in Figure 10 to those presenfed in Figure 11, it
appears that the overall mitigation is tied to the location of the maximum overpressute.
The mitigation is achieved by a reflected rarefraction wave dissipating the shock pressure.
Situations where the maximum overpressure is farther behind the shock front result in the
reflected rarefraction wave dissipating the ptessure soonet, allowing for greater overall
'miu'gaﬁon. To some extent, larger droplet sizes achieve greater mitigation under these
assumptions. However, these results are for a limited, shock tube geometry. The
optimizations are still based on geometty and mass loading of the real-wotld space through
which the shock wave travels and the shape and size of the initial shock. In order to
investigate the dependencies of these factors, a more realistic, spherical blast equivalent to

4.67 1b of TNT was simulated by Schwer et al (2003).

The results of Schwer’s simulation of this geometry for unmitigated and mitigated
blasts on a time basis are shown in Figure 12. These simulations were conducted for the
same mass loading (0.5) as above and for an initial droplet size of 25-30 pm. Both the time
delay and pressure reduction effects of the water mist impingement are observed. The
mitigation effect is not observed at the earliest time interval (125 psec), but is obvious by
the next increment (375 psec). This plot also shows the travel of the shock wave
corresponding to the time intervals. The first mitigation effects are observed on the second
time interval, at a distance of 0.8 meter from the initial encounter with the seeded gas.
Although this model represents a geometry not validated by laboratory expetiments, it does

provide a rough estimate of the depth of mist necessaty to achieve mitigation effects.
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Figure 12: Blast Pressure Profile at Different Times for Unmitigated (Solid)
and Mitigated (Dashed) Tests (Schwer et al (2003))

Vaporization effects were also considered as part of Schwer’s numerical
simulations. The results of the simulations support the theoretical calculations from
Appendix A, namely that vapotization plays a minimal role in the overall mitigation effects
of the water mist. Figure 13 shows Schwet’s compatison of the peak overpressures for the
pure gas, the seeded gas without vapotization effects, and the seeded gas including
vaporization effects. The vapotization effect does not appear at all until the shock has
traveled about a méter/through the seeded gas. This cotresponds to the minimum time
required for any heat transfer to occur from the blast wave. Although this distance also
éorresponds to the depth of mist required to ovetcome the pressure enhancement zone due
- to shock deceleration, the relatively small deviation from vaporization shown in Figure 13
supports the theory that the effects observed are not due primarily to vapotization. The
overall blast pressute is reduced somewhat due) to vaporization, but the majority of the

reduction is due to momentum and energy transfer and not heat transfer and vaporization.
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Figure 13: Maximum Overpressure Showing Effect of Vaporization (Schwer
et al (2003))

The preliminary results for mitigation effects using water mist indicate that the

highest degree of mitigation is achieved for mists in the range of 20 — 25 pm mean
| diameter. The mass loading used also has a significant effect on the overall mitigation
achieved. Expetimental results show that mitigation of peak pressure is maximized for
mass loadings between 0.5 and 1.0. Larger mass loadings achieve greater distortion of the -
shock front itself, modifying the abrupt, discontinuous pressure jump at the onset of an

unmitigated shock to a more gradual build to peak pressure.

Before a mitigation system can be désigned based on these optimized parameters
for water mist, an understanding of the level of mitigation necessary to make a system
feasible for Naval applications must be developed. The first step in this process is to look
at tile structure of ship hulls and bulkheads and develop a representative blast load to be
mitigated. The next chapter develops and analysis of the blast resistance of stiffened panels

and provides a background for quantifying the level of mitigation needed.




BLAST RESISTANCE OF STIFFENED PANELS

Blast effects are intimately connected to the structural design of watships. Navy
design guidelines lay forth requirements to withstand certain levels of static and dynamic
loading on various portions of a ship structure. Although resistance to blast from outside
sources other than underwater and nuclear explosion is not strictly defined for all U.S.
Navy ships, 2 fundamental and detailed understanding of shock wave loading and the
associated structural response of the ship is required for effective warship design. In
addition to aiding in proper design of warships, a full understanding of the behavior of ship
structures to blast loading defines the role that a mitigation system might play. The level of
mitigation necessary to make such a system practical is determined by the reduction in

loading required to maintain the integrity of the ship.

Analysis of the behavior of a floating, multi-degtee-of-freedom system such as a ship
under blast loading is best accomplished through study of live fire data. The late 1940's
produced a number of landmark studies into the failure of ships under explosive force.
The experiences of two World Wars provided ample data on torpedo attack and
underwater explosions. Taylot ‘(1948) and Cole (1948) conducted comprehensive analyses
of submerged blast waves and their effects on thin plates. Their research formed the
technical basis of all current blast damage prediction methods. Although most subsequent

research into this failure mode, conducted by ONR, has been classified confidential, open-

~ source study has been conducted on blast loading of steel structures and stiffened panels.

Nonaka (2000) looked at shear failure of steel beams and concrete structures using the
Wotld Trade Center bombing in February 1993 as an example. Rudrapatna et al (1999 and
2000) conducted blast loading tests of square plates and small, stiffened plates. These tests
provided background for the possible deflection modes of a larger scale stiffened panels.
Shin et al (2003) defined design guidelines for explosive confinements using analysis of
shock transmission and reflection, important to understanding the proper loading to apply

in the context of this problem. Schleyer et al (2000) provided background on numetical
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modeling of pulse pressure loading. Ramajeyathilagam et al (2000) provided shock pressure
pulse loading models including equations for the shape of the time dependent pressure
pulsé, peak pressure, and decay constant based on the weight of explosive. Nurick et al
(1995) studied deformation and tearing for small square plates with a single stiffener milled
into the test sample. Again, this study provided a good idea of mode shapes for larger scale
stiffened panel deflection. Klaus (1985) looked at numerical modeling of panel walls
subject to blast loading. Finally, Houlston et al (1985) developed and validated finite
element models for blast loading of stiffened panels by comparison to experimental work
“done on blast loaded square plates. Houlston’s work is quite relevant to this study,

although only carries the analysis to plastic deﬂecu"ons, not to full failure of a panel.

The behaviors of plates, stiffened panels, and other steel structures have been
extensively.documented through this substantial body of literature. Ship structures ate
comprised of stiffened panels, composed of steel plate with evenly spaced steel stiffeners in
the longitudinal direction. Larger structural members such as girders and frames support
each panel. For the particular case looked at here, the confining end conditions will be at
the frames and girders and the panel affected will be a stiffened panel with uniform size
stiffeners. These assumptions are reasonable considering the fabrication of typical naval

combatants. Specific panel geometries installed on representative ships are presented in a

later section of this report.

When transverse loading of any kind is applieci to such a stiffened panel, the panel
will deflect to support the load as expected by statics and Hooke’s Law. The dynamics of
blast loading conditions modify the behavior of the panel; time dependencies and impulse
effects become factors in the deformation and yield characteristics of the panel. Regardless
of. the dynamics of the problem, the yield behavior of the material will have certain

ramifications on the panel deformation.

As part of the panel yields, it can no longer support shear stresses and bending
moments. The stresses and moments on the panel are therefore transferred outwatd to the
- non-yielding portion of the panel until the energy. of the blast wave is absorbed or reflected.
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The yield zone continues to grow until this equilibrium is achieved. Stiffeners ot girders
will slow the spread of the yielding zone since they will require greater stress concentrations

to yield and will absorb more strain energy in yielding.

Despite understanding the yield mechanisms and dependencies of the problem, no
simple, reliable method of predicting hull plate blast damage has been developed. Although
computer codes for the prediction of blast damage are available, most codes provide
prediction of elastic and plastic deformation only. Prediction of fracture onset and
propagation is not well validated against actual results, so the codes provide little more than
a rough estimate of potential damage. As a result, nearly all of the definitive blast damége
prediction is conducted using scaled, live fire tests, requiting substantial time and resm;rces.
For the purposes of this study, prediction of the ovetpressure required to fail a bulkhead or
boundary is necessary. In otder to make such a predicﬁon, “failure” itself must be

quantitatively defined.

|

Once the definition of failure is understood, the loading that causes this level of
damage must be defined. Prediction of the level of blast loading 2 structure can withstand
is central to understanding the level of mitigation necessaty to presetve the integrity of the
sttucture. To establish a clear criterion for the level of mitigation to be achieved, a
representative blast load must be analyzed and compared to the loading that the ship
structute can resist. The shock loading created by various explosives is well defined in
open-soutce literature. Therefore, with information on loading and failure mechanisms of
ship structures and data lon the potential blast loads encountered, the level of mitigation

that must occur to prevent failure can be defined.

A confined space mitigation system such as water mist is not likely to prevent
damage to the outer hull of a ship. The goal is to protect the next layer of watertight
boundaries in the ship to prevent the spread of damage. Confined space geometries
provide added challenges to determining the actual level of blast overpressure propagating

through the space. This phenomenon has been studied in open-source literature for blast

mitigation in civilian, land-based structures. Explosions confined by a chamber or room
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result in rapidly increasing gas pressures, which eventually decay by venting out of either a
newly breached bulkhead or through the entry point. Under these conditions, shock

reflections occur such that the overall effect can be greater than the incident shock.

A study must be undertaken as to theidynamic pressure (blast) loading that typical
U.S. Navy ship’s interior bulkheads and decks can withstand. The undetlying assumption
in this study is that presérving the integrity of a bulkhead or deck minimizes the spread of
damage past that boundary. Prevention of first yield, however, is a very consetvative,
unrealistic expectation when dealing with blast loading. Mere plastic deformation does not
define failure in this sense. Significant (macroscopic) teating or cracking of the plate ot
weldment material will be considered failure for the purposes of this study. Under this
definition, the boundary in question will no longer be watertight or structurally sound. Full
buckling of a panel would also be considered failure since the boundaty could no 1onger
provide tesistance to normal ship loads. Buckling in this sense is likely accompanied by

cracks or fractures along the panel edges and therefore is included in the definition above.

Blast Load Prediction

The first step in determining the level of mitigation necessaty to preserve the
integtity of boundaries is to determine the blast profile to be resisted. This profile consists ~
of three major components: duration of overpressure phase, peak overpressure, and
impulse magnitude. For explosions close to the target, pressure-driven effects occur
quickly. The characteristic duration of a high explosive detonation is measured in

microseconds (10°). The pressure-driven effects of such an explosion occur on similar
A/

time scales.

Air-blast loading associated with explosions is commonly subdivided into (1)
loading due to the impinging shock front, its reflections, and the greatly increased static
pressure behmd the front, all commonly known as overpressure; and (2) the dynamic
prcssures due to the particle velocity and mass transfer of the air. Pressure loadmgs are

customarily characterized in terms of scaled range, given by:
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7= R/W"> )

Z = scaled range
R = radial distance between explosion center and target
W = explosive weight (INT equivalent)

Units for charge weight and distance in this expression should be either pounds and feet or
kilograms and meters. Using this scaled range factor, constant values of Z result in

constant parameters for explosive effects (peak pressure, positive duration, etc.).

The explosive effects parametets such as peak pressure and positive duration are
dependent on the size and type of the explosive. However, charactetization of the shape of
the blast profile is somewhat standard and often parametetized. For the purposes of this

study, the preliminary estimates of the blast loading encountered by USS COLE will be

used as a representative case.

Appendix C contains calculations for a 500 kilogram TN equivalent explosion at a
standoff distance of 10 meters using various methods for parameterizing the blast loading.
The time and distance dependent shape of the actual pressure profile of the shock wave is
an important parameter to understanding the blast loading to apply to a panel. The shape
of the incident wave is given by Taylor (1941) as: V

P, =P, ¢/ ' 3)

Pi = pressure in incident wave
Po = peak overpressure
t = time elapsed
x = distance from blast center, measured perpendicular to impinging plate

This shape reflects an exponentiai decay from the peak overpressure based on both time
elapsed since the blast and distance from the blast center. The empirical constant n in
Equation 3 is a decay constant representing the natute of the decay. Ramajeyathilagam et al
(2000) give an empirical equation for calculating the inverse of this decay constant (@ =

1/n) as follows:
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1 \— 0.22
3
O(R, W) = 92.5.W>. w? | .
R J @
W = charge weight (kg TNT)
R = radial stand-off distance (m)

The peak overpressure used to determine the shape of the incident wave can be
calculated using empirical formulae or charts as shown in Appendix C. Nonaka (2000)
calculates peak overpressure using a log-based empitical formula and an equivalent mass of
Sinkiri Dynamite. The resulting 6verpressure for the representative 500 Ib TNT explosive
is 130.3 psi or 89,850 Pa. Remennikov, A. (2004) uses the scaled range (see Equation 2,
above) as an input to a graphical representation of vatious blast parameters (Figure 14).
The resulting overpressure is approximately 145 psi or 10° Pa. Given the error inherent in
reading values off the log-log graph shown in Figure 14, these results are remarkably close
to those calculated using Nonaka’s empitical fc;rmula. Ramajeyathilagam, K. et al (2000)
use an empirical constant multiplied by the cube root of the scaled range (Z). This
calculation returns an overpressure of 7000 psi, over two orders of magnitude greater than
Nonaka’s formulation. It is believed that there is an error in the empirical constant used in

this formulation, resulting in this drastic difference.
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Figure 14: Blast Parameters Based on Scaled Distance
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For the purposes of this report, the overpressure used to calculate loading on ship
structures will be 130.3 psi with a positive phase pulse duration of 0.2 thousandths of a
second. To simplify the loading used for theoretical calculations, this pulse was assumed to
be a square pulse of constant pressure over the positive phase duration. Although this
square pulse is an accurate model of the leading edge of a normal shock structure, the decay
expetienced in this sharp discontinuity due to the mist mixture is not accounted for. The
effect of the shape change in the shock front is minimal on the way the shock is applied to
the structure for analysis. The dynamic effects modeled in this study accounted for a short
duration pulse at peak pressure. The time duration of the pulse itself is not signiﬁcanﬂy

altered by the change in shape of the shock, so the effects of this change are negligible.

The shock described is the loading desired to be resisted by a ship structure for the
purposes of this teport. The remaining problem in determining the mitigation level needed
is to define what level of shock will cause failure of a ship’s structure. The first step in

developing an answer to this question is to undetstand how ship subdivisions are designed

in current practice.

Naval Design Standards

When the structural arrangements of ships are designed, bulkheads and decks are
designed to withstand the typical global and local loads applied to them without yield.
These loads are due to large-scale ship motions such as hogging and sagging, weather
conditions such as icing and green water, hydrostatic pressute on the hull, and the weight of
equipment and payloads. Combatants must also comply with a series of Design Data
Sheets (DDS’s) and with the General Spe/vciﬁcatjons"for Ships of the United States Navy
(Gen Specs). DDS’s are design guidelines that outline a systems-based approach to the
mitigation of damage. Specific DDS’s relevant to ship sutvivability aﬁd structural design
include: DDS 072-1 (1972) “Shock design values,” DDS 072-3 (1988) “Conventional
weapons protection (fragments),” DDS 072-4 (1986) “Hull, mechanical, and electrical
systems survivability,” DDS 072-6 (1987) “Shaped charge warhead weapon effects data,”
DDS 072-7 (1988) “Conventional aitblast (proximity),” DDS 072-8 (1986) “Conventional

airblast (contact and internal) design and analysis methodology,” DDS 079-1 (1975)
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“Stability and buoyancy of U.S. Naval surface ships,” DDS 100-4 (1982) “Strength of
structural members,” DDS 100-6 (1987) “Longitudinal sttength calculation,” DDS 100-7
(1984) “Structure to resist weapons firing effects,” and DDS 100-9 (1991) “Nuclear airblast
design for surface ship structures.” DDS’s 072-1, 072-3, 072-6, 072-7, and 072-8 are
classified Confidential and therefore cannot be further discussed in this study. They set
forth some of the major design critetia for blast loading on ship structures and therefore in
many respects define the strength of ship boundaries. Although the design guidelines
themselves are classified, the resulting structures of current sutface combatants provide a

good example of the type of structure that fulfills the requitements of the DDS’s.

Most of the requirements set forth in the unclassified design guidelines are general
in nature. For example, DDS 072-4 defines three major design principles for HM&E
survivability: separation of redundant systems, isolation of non-redundant éystems, and
concentration, localization and shielding/armoring of vital non-redundant systems from
areas of potential hazard. It then lays forth a 5-step procedure for designing a total system
for redundancy and separation, two of the key survivability characteristics. DDS 079-1

contains key parameters for proper stability characteristics dependent on ship type and

~ mission. It defines requitements for parameters such as intact and damaged heel and trim

angles and righting arm curves in vatious conditions.

DDS 100-4 characterizes some important factors for stiffened panel calculations
that are relevant to this study. First, it delineates 2 method of calculating buckling loads of
plating panels under combined compressive and shear loading. It also identifies the Navy
standard strength curves for selected common hull materials. These curves include column
‘strength, ultimate compressive strength, and streﬁgth under combined comptessive and

shear loads for high strength steel (HS) and ordinaty steel (OS).

DDS 100-7 and the Gen Specs define requitements for hull structures based on
the proximity of the structure to own ship’s weapons systems. For example, these
guidelines set forth an empirical formula relating a static equivalent pressure to the booster
motor thrust, angle of incidence, and atea of impingement for missile blast loading from a
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missile being launched from own-ship launchers. The intention of these guidelines was to
protect ship bulkheads from the blast loads experienced behind the Matk 26 deck-mounted
missile launcher. Although these launchets have been phased out of US Naval platforms in
favor of the in-hull Vertical Launch System (VLS), the empitical calculation of equivalent
static head préssure based on rocket blast loading is a useful tool. The DDS defines the

static equivaleht pressure applied by a missile launch as:

T-(sin(ot) + 0.0225)
N p=— sin(a) )

A - ©)
P = static equivalent pressute (psi)
T = total thrust of missile (bs)
o= angle of incidence (deg)
A = impingement area of surface (in’)

Equation 5 is not a direct function of distance from the missile to the bulkhead or
deck in question; the area of impingement is calculated based on fhe projected area of a 3°
divergence blast cone from the axis of the missile to the surface. Therefore, the distance is
accounted for by documenting the impingement area and angle of incidence of the blast
load to the surface in question. As the distance from the missile increases, this projected

area also increases, reducing the static equivalent pressure experienced.

DDS 100-7 also provides guidelines for plate panel design to withstand the
equivalent pressures of missile and gun blasts. Empitical formulas and tabulated values of
the relevant constants are provided for two loading cases. The formulas are develdped
assuming simply supported edges on the plates. Plate dimensions are determined by the
locations of stiffeners and girders. The first loading case assumes that the blast load is |
uniform over the entire plate, indicating that the impingement area is larger than the area of
plating between stiffeners. The second loéding case assufnes a more concentrated load in a

central rectangular area of the larger plate section.

Similar expressions are developed for gun blast loads based on the geometry from

the structure being assessed to the gun muzzle and on the caliber of the gun itself. DDS
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100-7 also delineates 2 method for design of deck and bulkhead stiffeners once the loading
is understood. It treats the stiffeners as pinned-pinned beams, thetefore rendeting panel
stiffeners as non-continuous members. Iﬁ panel stiffeners are consider\éd continuous, some
level of fixity could be assumed for the end conditions. The maximum moment in the
stiffener is calculated assuming either a uniform ot a concentrated load condition. Under a
uniform load condition, the required section modulus equals the maximum moment over

the maximum allowable stress. This maximum moment is calculated as shown in

Equations 6 and 7.
W =Pn - ©)
2
M=L '

W = distributed load on stiffener (Ibf)
P = static equivalent blast pressure (psi)
n = length of minor axis of impingement area (in)
L = stiffener length (in)

For a concentrated load case, the force applied is calculated as the static equivalent
pressure times the area over which it is applied, similar to the formulation in Equation 6.
This force is then applied as a point force at a pre-determined location along the stiffener.
The maximum moment is defined using the distances from the load to each of the pinned
ends times the force over the length. This poiht load method is a vety consetvative
approach to design where the blast impingement area is signiﬁcéntly less than the stiffener
length. It is much more common to assume the blast to be uniformly distributed over the

stiffener for blast loadings.

Design of major supporting structures such as girders follow similar procedutes to
those for stiffeners. Again, structural members are conservatively assumed to have pinned

connections at support points and are subjected to either uniform ot concentrated loads

“ depending on the geometry of the blast zone.

DDS 100-9 defines a procedure for “the design of sutface ship structure to resist
in-air, non-contact tactical nuclear weapons explosions of low- to medium-yield.” This

design guideline is based on a blast and shock wave otiginating just above the water surface
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with the blast wave front perpendicular to the water surface. The ship structure, including
intermediate stiffeners between girders, frames, and transverse bulkheads, is designed to
support the reflected overpressure from a blast and to tesist the shearing, tearing, buckling,
ot collapse loads that exist on various faces of a structure as a blast load passes over it. The

reflected overpressure is the resulting pressure occutting when the incident overpressure

~ wave strikes a surface parallel to the blast front and is reflected. This pressure includes the

incident overpressure plus the instantaneous pressute loading of the reflected shock front.

DDS 100-9 uses a closed box as its global structural model and therefore looks at loads

resulting on all outward faces of this structure as the blast travels over and around it. The
maximum loading will occur when a blast impinges perpendiculat to a panel. This loading
represents the relevant load case for the stiffened panel problem presented in this ‘chapter.
Although this report primarily focuses on conventional blast loading, the shock wave
formation of a conventional blast is not significantly different from that of a larger, nuclear

blast at greater stand-off distances.

Empirical formulas are provided in DDS 100-9 for the peak reflected pressure and
stagnation pressute a structure must withstand. These pressures are calculated based on
the peak incident overpressure in the shock and the ambient pressure of the surrounding

atmosphere as shown in Equations 8a, 8b, and 8c.

7P, + 4P P02 ) .
P.= 2P| ———— —_— P =P +q,

5
4o =7
r
7P+ P, ) ® 2| 7P+ Py ) (8ab,c)

P, = maximum reflected overpressute (psi)
P, = peak incident overpressute (psi)
P, = ambient atmospheric pressure (psi)
q, = dynamic pressure (psi)
P, = stagnation pressure (psi)
The dynamic pressure referred to in Equations 8 a, b, and c is the result of the gross
violent movement of air associated with the blast wind. It is smaller in magnitude than the

blast wind itself when the incident overpressure is less than 70 psi, but is additive to the

incident overpressure on vertical sutfaces. Therefore, the stagnation pressure is equal to

the peak incident overpressute plus the dynamic pressure, as shown above.
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DDS 100-9 also lays out guidelines and empirical equations for calculating the beam
resistance provided by a given plate-stiffener combination (stiffened panel). It uses the
geometry of the plate and stiffeners to determine plastic section moduli at the mid-span and
at the‘support. ‘These moduli then combine with the dynamic yield stress of the matetial
and the length of the stiffened panel to provide an overall resistance. The resistance of the

overall stiffened panel is given as follows:

8o dy ‘
Ry = —(Zps + Zpy1)
R, = panel resistance (Ibf)
Gy, = dynamic yield stress (psi)
L = length of stiffener (in)
Zps = plastic section modulus at support (in’)
Zpy = plastic section modulus at mid-span (in’)

©)

The yield stress used in this equation is a dynamic yield stress, including accounting
for allowable plastic flow and dynamic load effects. It will be discussed further in the next
section of this report. This intrinsic resistance of the stiffened panel is then compared with
the resistance necessary to withstand the desited blast loading. The required plastic load
resistance for the blast is determined by applying the stagnation pfessure (see Equation
(8c)) over the breadth and length of the stiffened panel and dividing by an empirical force
factor. This empirical factor is dependent on the natural period of the stiffener, the
duration of the positive phase pressure pulse, and the ductility factor (). The ductility
factor is a dimensionless quantity determined in ship specifications that reptesents the
amount of permanent set or plastic deformation that is allowable for various portions of
the ship structure under blast loadiﬁg. Equation 10 shows the formula fbr determining the

normalizing force factor for the required plastic load resistance.

T -
Fi=—(ap-1)"0y 261

o)
2pl14+] 07— v
' (10)

F, = empirical factor for normalizing plastic load resistance
T, = natural period of stiffener (sec)
T = positive phase duration (sec)
K = ductility factor (dimensionless)
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The major design parameter for the stiffened panel is that its intrinsic resistance be greater
than the required plastic load resistance for a blast designated in the ship design

specifications.

All of these design guidelines provide preliminary rules for current ship structural
design. In addition to serving as a design tool to derive required plate thicknesses and
stiffener moduli, the empirical relationships developed can also be used to evaluate existing
structures. By reversing the design procedures, an existing panel can be analyzed to
determine the blast pressure loading it can resist without failure. This method will be

discussed further in following sections of this report.

Beam Theory and Dynamic Loading

Thus far, the methods of calculating the allowable loading on a stiffened panel have
been empirical, derived from live fire data. To validate these results, an extensive study of
the dynamic load limit of a stiffened panél was Eompleted. The first step in this theoretical
analysis was to define the maximum allowable stress in the panel before it is considered to
have failed. As discussed, first yield is far too conservative a measure when blast loading is
considered. First yield is defined as the elastic limit of 2 material, or the stress at which
petmanent deflection will .result upon unloading. This point can be observed as the first
k'nuckle in the stress-strain curve for steel shown in Figure 15. Due to the shape of a
tyi)ica.l stress-strain curve for metals, a significant amount of plastic deformation can occur
before the material approaches its fracture point. Strain hardening occurs during the first
phase of this plastic deformation, such that the material ié able to withstand still-increasing
amounts of stress. The ultimate tensile strength of the material is defined as the highest
stress the material can resist, corresponding to the highest point on the curve in Figure 15.
Once this -ultimate tensile strength is reached, the material continues to strain to fracture
with no increase in applied stress. Since these results are obtained for an idealized
specimen in a laboratory setting, using the ultimate tensile strength would be a bit risky as a
measure of the fracture point of the material. Therefore, a quantity referred to as flow

stress is used to indicate a representative stress for probable fracture.

48




ba———Stroin 1o frocture ————»
ks—— Uniform stroin ———-I

N

Offset

1 yield N
p Tensi,
£/ th
,’ reng sirength

Averoge stress

[}
/
/
/
/
L

Conventional siroin &

Figure 15: Typical Stress-Strain Curve for Steel

Flow stress equals the average between the yield stress and the ultimate tensile
strength for ductile materials such as steel. It represents a stress high enough that
continued increase in applied stress is likely to cause flowing plastic deformation and
therefore lead to collapse or fracture of the material. The flow stress, G, is used
throughout the analysis presented here to represent the degree of stress that represents

failure in a stiffened panel.

In order to analyze panel geometry for plastic collapse, the bending moment
representing the collapse condition must be defined. Jones (1997) defines the plastic
collapse moment of any solid rectangular ctoss section as:

o B H K h
Mg= 220 o
' an

Mo = plastic collapse moment

O = stress
B = breadth of plate
H = thickness of plate

For the case examined here, the stress used in this formulation of plastic collapse moment
is the flow stress. This moment is equated with the maximum internal moment across the
breadth of the stiffened panel, a function of the loading. Solving for the load gives the

maximum pressure the stiffened panel can sﬁpport before piastic collapse.
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Looking at a simplified geometry of the stiffened panel and treating it as a deep
beam allow calculation of the internal moment as a function of loading. In two
dimensions, the panel is modeled as a beam supported at the ends .by large structural
members such as girders. A single stiffener was added at the center of the beam to

reptesent the supports on the panel. Actual panels encompass multiple stiffeners, but to

- simplify the mode shape and loading for this first estimate, a single stiffener case was used.

A dishing mode shape was assumed for this simplified structure as shown in Figure 16.
Based on the assumed deflected shape of the structure, the center section of the beam was
modeled to better define the boundary conditions. This mddgled portion was cut at the

zero-slope point of the deflected shape to allow modeling by a fully clamped end condition.

Undeflected Shape
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-Figure 16: Simplified Stiffened Panel Mode Shape

The modeled portion of the beam shown above was app'toximated as a two-
dimensional beam with clamped end conditions to enforce the zero-slope deflection at this
point. To properly represent the reaction forces on this modeled beam, the reaction force
at the stiffener was assumed to carry the entire distributed load for the length of the

modeled portion. The portions of the distributed load applied to the left and right of the

modeled section of panel were assumed to be supported by the girders (or stiffeners) on
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either end of the panel. This loading model represents a worst-case scenario where the

stiffener is modeled as a large point load at the center of the beam. Figure 17 is a graphical

representation of this model.
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Figure 17: Modeled Portion of Stiffened Panel

Superposition of the uniform load and point load cases from beam tables allow
calculation of the total moment on the beam as a function of x-location. The development
of this total moment is shown in Appendix E. The representative geometry and loading
case used in the first section of Appendix E demonstrates the location of the maximum
moment. As can be seen in Figure 18, the maximum moment occurs at the point of
inflection produced (in both the deflection and the moment diagrams) at the point load
representing the stiffener. For this simplified panel geometry, the maximum moment is
located at the mid-span of the beam. Therefore, the exact moment at this point along the
beam can be calculated and equated to the plastic collapse moment for the stiffened panel

to solve for the maximum loading.
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Figure 18: Bending Moment in Modeled Stiffened Panel
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The remaining two sections of Appendix E show the calculation of the maximum
load supported by a stiffened panel as installed on the DDG-51 class and DD(X) class
ships. Further discussion of .the geometry of a representative stiffened panel for each
platform is included in the next section of this report. Using the method described, the
maxitmum uniform load, g, is determined for each geometry. Since the end goal of this
calculation is a determination of the static pressure the panel can resist, this uniform load is
divided by the length of the panel to re-introduce the third dimension to the problem and

provide a result in terms of static pressure.

This solution to the stiffened panel problem does not include any time-dependent
or .dynamic effects.  Shock waves from blast loading~ propagate on a very short
(microsecond) time scale. The positive pressure phase from the shock is only applied to
the panel for approximately 2 x 10™ seconds, and the peak pressure calculated in the section
above represents the instantaneous maximum pressure reached during this positive phase.

Thetefore, the effects of dynamic loading must be considered when studying blast effects.

The problem of the dynamic load condition can be modeled using some common
strain-rate inclusion formulas such as the Cowper-Symonds relation (Equation 12). This
relation outputs a “corrected” dynamic yield stress from input parameters including the
static yield stress, the strain rate, and material constants. The strain to fractute or ruptute of
steel is used in this case to represent the desired maximum deflection for the panel. This
strain is applied over the time period of the positive phase of shock pressure to obtain a
strain rate. Empirical constants representing the matetial properties of steel are included in
the relation. Strain rates typical for achieving the fracture strain in steel over the time
period characteristic of a blast load will increase this dynamic yield stress by a factor of two.

1

-
c =0 1+ (_Sdot\
odyn -~ Cog’
ynooee D ) (12)
G4y = dynamic yield stress
G, = plastic flow stress
€4, = strain rate (= rupture strain/pulse time)
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D = material constant (= 40 Hz for steel)
n = material constant (= 5 for steel)

The Cowper-Symonds relation is typically used to modify yield stress to include
dynamic considerations. In this case, plastic flow stress is used in place of yield stress to
represent the fracture condition imposed for this problem. It is unknown how these strain
rates will affect the plastic flow stress of the material. It is possible that the steel will
becomne effectively more brittle as a result of the high strain rate, therefore decreasing the
fracture stress of the steel. Since calculations for plastic collapse moments are all based on |
the plastic flow stress, this is the important parameter to consider strain rate effects on.
Plastic flow stress is calculated as a numerical average between the yield and fracture
stresses for the material and therefore could likely remain close to constant under high

strain-rate conditions.

According to Brokenbrough and Johnson (1974), strain rate effects are also
temperature dependent. For temperatures from —50°F to room temperature, increasing
- strain rate increases both yield strength and tensile strength in most steels, including high
strength alloys and heat treated steels. However, at high temperatures (600°F) these effects
are quite different. Increasing strain rate at high temperatutes has very little effect on the
initial yield strength of most steels. At the same high temperature, the ultimate tensile
strength of all steels tested actually decreases with increasing strain rate. This is an
interesting point to notice since many blast loads involve significant heat output as well as
shock propagation. For the purposes of r}ﬁs study, however, it is assumed that the shock
front propagates much faster than the heat from the blast can transfer to the stecl. The
thermal conductivity of air is approximately 0.024 Joules per meter-second-"Celcius and the
thermal conductivity of steel is approximately 46 J/(m s °C). Based on these values, a
minute amount of blast heat will have conducted from the air to the steel of the ship
- structure. Uniform heating effects such as those desctibed above will not be a factor since
heat would have to transfer to and through the steel material before these strain rate effects
would be observed. Since the rate of heat transfer from air to steel is much slower than the
shock front propagation, these high temperature effects can be neglected. Therefore, the

assumption that both yield and tensile strengths increase with strain rate holds.
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Plastic Collapse of Plates and Stiffened Panels

| To achieve more accurate results for the stiffened panel problem, Jones (1997)

derives upper and lower bounds for a variety of panels and boundary conditions. The

derivation of these bounds for a sample geometry is presented in Appendix F. The lower

bound for a simply supported rectangular plate is calculated by deriving the bending

moments in the x, y and cross directions and substituting these into Equation 13, the |
governing differential equation of equilibrium for the plate. Solving for p‘k in this expression

gives the static pressure to plastic collapse.

2 ,:
Tomy+2-28 0, +—a-2—2My +p=0 (13)
ox 0x0y oy

The upper bound for the simply supported case is developed using a kinematically
admissible transverse velocity profile. This profile, shown in Figure 19, assumes that

regions I and I remain rigid, with plastic flow concentrated in the plastic hinges that form

- at the region boundaries. The admissibility of this profile is supported by observed failure

modes in laboratory testing.

II y 1X

Figure 19: Kinematically Admissible Transverse Velocity Profile
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An energy method is applied by deriving the internal energy dissipation in the plate,
and the external work due to the uniform applied pressure. Equating these energies and
solving obtain the upper bound for collapse pressure. This energy method is also used to
solve for the collapse pressure in a partially restrained boundary condition case. To
apptoximate the partially restrained boundary condition, a moment between zeto and the ,
plastic collapse moment, M,, is applied to the outer bound of the plate. This applied
moment gives additional energy dissipation atound the plate boundaries, which is added to
the internal energy dissipation. This total energy is then equated~ to the external wotk
energy (which remains the same from the simply supported éase) and the plastic collapsé
pressure is obtained.

/

Jones also looks at the dynamic plastic Behavior of plates by including an inertia
term in the governing equations of equilibtium. As a reptesentative case, the static pressure
derived above is applied as a uniform rectangular pulse of duration t. To simplify
calculation, the plate is assumed to be square. The square geometty allows use of symmetry
when assuming a kinematically admissible velocity profile. For cases where the applied
peak pressure is greater than twice the static collapse pressure for the plate, the velocity
profile must be divided into three distinct phases. The displacement solutions!for each of
these phases are added together to artive at an overall displacement for the dynamic load

case. The result of these derivations is presented in the first section of Appendix F.

. For the purposes of this study, this method of establishing net displacement based
on a representative dynamic load is helpful to visualize the amount of permanent
displacement a structure which does not rupturé will undergo under these blast conditions.
For example, using 2 plate thickness of 0.4375 inch, a one foot by one foot plate will deflect
0.435 inch, or approximately one plate thickness. When the size of the simply supported

plate is increased to more typical ship dimensions of 9 ft square, the resulting displacement

_is 7.62 feet. For a ship deck, this would represent a deflection spanning to within 2 feet of .

the overhead of the compartment. Some form of collapse or fracture failure of the

structure would most certainly accompany deflections of this size.
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Further Considerations

The theoretical methods. presented above for solving' the stiffened panel problem
do not consider all factors influencing the final failure pressure of the panel. Each of the
methods used operates on a series of assumptions affecting the outcome achieved. These
methods were chosen based on increasing complexity of the model used without resorting
to numerical methods. It is recognized that many other factors must be considered to
obtain truly accurate results. Often the affects of these conditions ate only understood

qualitatively and cannot be accurately modeled through empitical or simple first-principals
based calculations.

For example, the method of attachment of the stiffeners is likely fo play a major

 role in this problem. Welding causes interesting modifications to the properties of the steel.
In addition, most high-strength steels are worked to increase the yield strength of the steel,

~ butin tHe process, the ductile zone of the member is reduced. This is especially true in the
heat affected zone surrounding a weld. Therefore, although the stiffeners increase the
overall strength of the panel until the onset of yield, the region of strain which the material
can withstand after the onset of yield (usually about 8-10x the yield strain for steel) can be
significantly reduced due to the heat affected region. For example, steel ruptures: when the
strain reaches a fracture strain, €; typically about 20% for bate steel. However, this strain is
significantly less for material in a heat-affected zone. Paik et al (2003) show that actual

weldment material has an even lower &; value, typically around 8%.

DDG-51 and DD(X) Structural Analysis

The question still remains; what is the level of mitigation necessary to make a blast
* mitigation system feasible? In order to determine a quantitative level of success for
mitigation, real-world data for the strength of ship structures must be studied in
comparison to a representative blast loading. Two candidate platforms wete studied to
determine their intrinsic blast resistance and the amount of mitigation necessary to prevent

the spread of damage from a blast: the DDG-51 class destroyer and the DD(X) next-

generation destroyer.

56



The Arleigh Burke Class (DDG-51) destroyer teptesents the current state-of-the-art
in Naval combatant design. Its structure includes a side shell and transverse bulkheads
composed of high strength steel and a weather deck, longitudinal bulkheads, and sﬁffeners
composed of ordinaty or medium strength steel. The material properties for these steel
components ate listed in full in Appendix D. Analyzing the structure of this platform is
very relevant since much of the impetus of designing blast mitigation systems results from

the aftermath of the bombing of the USss Cole, an Arleigh Butke Class destroyer.

- DD(X) is the next generation of Naval destroyer, cuttently in the detailed design
phase. Although this ship does not yet exist in the operating fleet, it is a prime candidate
for future installation of a blast mitigation system due to some of the ship’s unique design
features. In the current design of DD(X), the side shell, weather deck, transverse bulkheads
and internal frames are all composed of high strength steel with mild steel sﬁffene:s. The
longitudinai bulkheads, howevet, ate composed of HY100 with HSLA-80 stiffeners. This
stronger matetial is used as armor plating inboard of the Peripheral VLS cells to protect the
ship from incoming blasté impacting the missile cells and causing collateral damage inboard
of the launchers. Due to the advanced, tumblehome hull form used for this ship, the
missile launchers are installed along the side hull rather than along centerline. The
additional structure in the longitudinal bulkheads is both heavy and costly. However, there
is space outboard of the missile launchers (due to the reverse curvature of the hull) which
could potentially house a mitigation system. If blast pressures could be reduced outboard
of the missile cells, a further layer of protection would be added to the hull. This
protection could allow forr a reduction in the weight and cost of the longitudinai bulkheads
and reactive armor plating needed in the current design.

N

For putposes of comparison, the structural arrangement of the side hull panels was
analyzed for both the DDG and the DD(X). A vatiety of analyses akin to those presented
above are calculated for each of these ships in Appendices E-I. Since most of the
calculations presented do not specifically account for the support of the stiffenets in the

panel, two geometries were considered: one using the panel as a whole and a second using a
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narrower panel spanning from frame to frame in width, but only from stiffener to stiffener

in height. Figure 20 shows the relevant dimensions for each ship.

Deck or Girder
Frame Frame
B Stiffeners
_____________________________ Deck
Height

Deck or Girder

I E

L

Figure 20: Stiffened Panel Structural Arrangement

Table 1: Stiffened Panel Properties

Each of the methods of deriving collapse pressure for a stiffened panel described
above was applied to the panels installed on these ships. In order to fully'unders’tand the
geometty of these stiffened panels, the calculations were completed considering the panel
to span from frame to frame horizontally and girder to girder vertically (L. x D). From the
dimensions shown in Table 1, it is observed that the geometry represents a nearly square

panel for both ships. These calculations were then repeated considering the panel to span
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from frame to frame and from stiffener to stiffener (L x B). This panel has 2 much higher
~ aspect ratio. The calculations involved in these analyses are presented in the corresponding

appendices to this report. A summary of the findings of all calculations are presented in
Table 2 and in Appendix I.

When -calculating the panel strength from gitder to girder and frame to frame, the
minimum pressure calculated is the result of the simply supported beam bending method.
The maximum pressure from the first principles calculations is that resulting from the -
inclusion of a kinematically admissible velocity profile with a fully clamped boundary |
condition. The results from the empiricél calculation methods used in the U.S. Navy design
data sheets are two orders of magnitude greater than any of the first principle method

results. Discovering the source of this discrepancy will be central to any future work on

. this problem.

_ For the higher aspect ratio geometry between stiffeners, the beam bending method
was calculated assuming the span to be twice the B dimension since the model for these
calculations places one stiffenet at mid-span and another at each end of the panel. Using
the deep beam approximations where the span is significantly shorter than the depth, as is
the case using the stiffener spacing, the bending moment calculations result in higher
estimates of the resistance, especially when dynamic considerations are includeci. For this
geometry, the values calculated for using the Design Data Sheets are still apProximately an

ordet of magnitude greater than those calculated using first principles.
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Units DDG - 51 Class DD(X)
T (Plate Thickness) in 0.3438 - 0.4375
L (Frame Spacing) ft 8 7.54
H (Deck Height) ft 9.13 9.99
Stiffeners per panel 3 ’ 4
Stiffener Spacing . ft 3.043 . 2.498
Static Failure Pressure (Moment
» |calculation) Pa 1.23E+04 ) 1.67E+04
“E’ Dynamic Failure Pressure (Moment + :
E strain rate effects) . Pa 3.65E+04 4.93E+04
‘®  |Simply Supported Lower Bound
& ](Johansen Yield Condition) Pa 2.83E+04 4.53E+04
5 Simply Supported Upper Bound (Energy
o |Method with Velocity Profile) Pa . 2.83E+04 4.55E+04
S |Fully Clamped Lower Bound (Statically
£ |Admissible Stress Field) Pa 3.78E+04 6.12E+04
® [Fully Clamped Upper Bound (Energy
2 Dissipation Method) " Pa 5.66E+04 9.10E+04
$ |Partially Clamped (50%) (Energy )
% Method) Pa 4.25E+04 6.83E+04
@ IDDS 100-7 (blast loading) Pa 1.57E+06 2.32E+06
ﬁ DDS 100-9 (air blast / nuclear) )
a For Max Deflection w/o rupture| Pa . 2.55E+07 2.94E+07
For Ship Specifications Pa . 5.75E+06 6.66E+06
@ Static Failure Pressure (Moment -
g calculation) Pa 4.93E+04 1.04E+05
g |Dynamic Failure Pressure (Moment +
% strain rate effects) Pa 1.46E+05 3.08E+05
@ |Simply Supported Lower Bound .
£ |(Johansen Yield Condition) Pa 1.80E+05 3.71E+05
g Simply Supported Upper Bound (Energy
S |Method with Velocity Profile) Pa 1.83E+05 3.76E+05
#  |Fully Clamped Lower Bound (Statically )
2 |Admissible Stress Field) Pa 2.84E+05 5.94E+05
% Fully Clamped Upper Bound (Energy
0 |Dissipation Method) Pa 3.65E+05 7.53E+05
g Partially Clamped (50%) (Energy :
f;_" Method) ‘ Pa 2.74E+05 5.65E+05
4. |DDS 100-7 (blast loading) Pa 2.48E+06 4.53E+06
o' [DDS100-9 (air blast / nuclear)
-;._“—’ For Max Deflection w/o rupture] Pa 2.55E+07 2.94E+07
For Ship Specifications Pa 5.75E+06 6.66E+06

Table 2: Comparison of Stiffened Panel Calculations

For the purposes of this investigation, the peak overpressure applied to the panel in
question is 130.3 psi or 8.985 x 10° Pa. The static equivalent pressure applied to the panel is
3124 psi or 2.154 x 10° Pa. This peak overpressure is below the failure pressﬁre calculated
using the U.S. Navy Design Data Sheets. The static equivalent pressure is less than the
failure pressures calculated using the DDS’s for all cases other than the DDG-51 panel

spanning from frame to frame and girder to girder.
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The results of the stiffened panel problem provide a starting point to investigate the
level of mitigation that caﬁ be achieved using water mist. The ideal situation would be to
reduce the representative 500 Ib TNT blast load on a ship bulkhead to a level below any of
the pressures calculated above. This most conservative expectation is unlikely to be met by
any mitigation system. However, achieving a level of mitigation which reduces the pressure

loading to below the levels calculated using the dynamic considerations is a realistic goal for

a feasible system.
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SCALING AND DESIGN

Matching of Ship Failure Loads to Mitigation Level Achieved

Based on the calculated load resistances of stiffened I;anels for two representative
ships, a desired mitigation level can be identified. Evaluation of the feaéibi]ity of a water
mist blast mitigation system for shipboard use begins with a comparison of the mitigation
levels achieved through applying water mist to the mitigation necessary to prevent failure of
ship structures. The same energy comparison method presented in Appendix A was also
used to establish necessary mitigation levels for each of the shipboard panel geometries
discussed. As a minimum, the failure pressure calculated using the fully clamped boundary
condition and the energy method (Appendix F) wete used to establish the amount of

energy that must be absorbed from the impinging shock front. Results of these calculations

are presented in Table 3 below.

&

94.6%

Table 3: Required Mitigation for Prevention of Ship Panel Failure

From this table, it is observed that the mitigation necessaty based on the full panel

- geometry is not possible with the levels of mitigation obsetved in laboratory experiments
and numerical simulations. Even under the most liberal failure loading case calculated, the
full panel geometry would require peak overpressutes to be reduced to between 3 and 5%
of their unmitigated values. This is about an otder of magnitude greater mitigation than is
achieved using water mist. It should be noted that these full panel calculations did not
include the strengthening effects of the stiffeners in the paﬁel and therefore are

conservative.
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It is possible and quite feasible to mitigate the blast to the level which prevents
failure as>calm11éteci for the panel spanning from frame to frame and stiffener to stiffener.
This stiffener to stiffener calculation is likely to be a closer apptoximation to the actual
strength of the stiffened panel structure installed on U.S. Navy ships. Based on this
consideration, the water mist blast mitigation system could be a useful defense to protect
ships from blast loading on the side hull. However, the correct mist parameters must be
designed to achieve the mitigation needed. In addition, the space used for the water mist
system must provide adequate depth to-allow the mist to exhibit its mitigatioﬁ properties.
A space providing only 1 or'2 metets of water mist prior to the shock front encountering
the next bulkhead will actually enhance the peak overpressures of the shock front, creating
a negative effect. This necessary depth, along with the i)roper mist properties, are essential

to a feasible design.

Mist Parameters

It has been demonstrated that significant mitigation of the peak overpressures
experienced in blast loading can be accomplished using water mist. Based on experimental
results, it appears that peak ovetpressure can be reduced by 30% of _its' original value with a
well-designed mitigation system using optimal droplet size and mass loading ratios.
Numerical results for an optimized seeded gas indicate that pressure reductions as gfeat as
35% are possible. For a constant mass loading of 0.63 and optimized droplet size of 26-28
um, the maximum overpressure is reduced as shown in Figute 21. This figure shows an
~ idealized pressure reduction, not accounting for the inherent éecay of the shock pulse
through air. The no particles case in this figure represents a pure vacuum, but does show

the dramatic effect the water mist could theoretically have on peak overpressures due to

shock.
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Figure 21: Maximum Overpressure as 2 Function of Distance through Seeded
Gas for M, = 1.49, n = 0.63 (Schwer et al (2002)) -

One of the major design parameters in designing a mitigation system for shipboard
applications is opdnﬁimg the mean droplet size of the water mist. For feasibility, the
necessary nozzles to facilitate creation of the optimized droplet size should be readily
available. Based on study of commercial water mist systems, the rhinimum practical mist
size is about 15um. The current U.S. Navy water mist system uses 100 pm droplets. From
the experimental and numerical results presented in this report, the optimal droplet size
falls between 20 and 40 um. Therefore, the proposed mitigation system will use a mean

~droplet size of 25-30 um.

The mass‘ loadings used in both the shock tube tests and the numerical simulations
play a major role in the resulting mitigation. Some question exists as to whether a
mitigation system should be designed for a specific mass loading ot for a specific numerical
particle density. For petfectly uniform dropiets m a homogeneous mixture of mist, the
difference between holding mass lbading constant and holdjng r.1urnber‘ density of droplets
constant would be identical. However, for a dynamic mist undergoing settling, introduction
of new mist through the nozzles, the number of particles in a volume may not be constant

for a constant mass loading and vice versa.
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Schwer et al (2002) investigated the effect of which of these parameters is held
constant in numerical simulations. The tesults of these simulations are presentéd in Figure
22 for a variety of droplet sizes. The plot on the left in this figure shows results for a
constant mass loading, as many of the preﬁous figures in this report have shown. The
figure on' the right shows the results from holding a constant number density of part’icles.
The resulting mass loadings for each patticle size are shown in the plot. These results play
into the scaling of concentration used in this study based on the droplet size. The theory
behind Schwer’s calculations was to neutralize the increased effect of vaportization for
smaller droplets by reducing the total number of drops in the mixture. This method
proved invalid since these vaporization effects ate a function of sutface area of the droplets

to a greater extent than they are a function of total number of droplets.
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Figure 22: Maximum Overpressure for Different Droplet Sizes with Mass Loading Held Constant
(n = 0.63) (left) and Number Density Held Constant (Schwer et al (2002))

Based on the results of the shock tube tests and numerical simulations presented,
mitigation is most effective for mass loadings between 0.5 and 1.0. A large amount of data
exists proving the mitigation propetties for a reptresentative Mach number for blast loads
and a mass loading of 0.63. Therefore, this mass loading will be used for the proposed
design, although it is recognized that this mass loading is predominantly a function of -

nozzle geometry and pressure on the system. For shipboatd installations, optimization of




the mass loading can only be achieved to an order of magnitude estimate. The actual mass
: /
loading will be highly dependent on the current fire suppression system usage and pressure.

Cutrrent U.S. Navy Water Mist Fire Suppression System

The U.S. Navy has developed a machinery space water mist system that utilizes a
modified high-pressure spray nozzle. According to the CPSMA (1997), The system is
designed to produce high volumes of 100 mm droplet (mean diameter) sprays with very
high spray momentum to achieve rapid supptession of large hydrocarbon pool ot spray
(Class B) fires. These nozzles emit 2 gpm at 1000 psi on a grid system. This system
produces water flow application rates (0.06 —‘0.07 gpm/ft) three to four times higher than
commercially available systems. Although the mitigation effects are not obsetved to the
same extent for droplet sizes in the 100 pm range used in the cutrent U.S. Navy water mist
system, modification to smaller nozzle apertures such as those used on many commetcially

available water mist systems could make such a system feasible for installation on ships.

Input parameters into the design of a water mist blast mitigation system include the
shape and size of the space to which the mist is applied and the pressure, flow application
rate, and droplet size of the water mist itself. The 1000 psi system currently being tested for
U.S. Navy platforms in a machinery room setting provides a good starting point for a
feasible back fit design for future platforms. The mass loading (mass of particles/mass of
air) for this system is on the order of 2.0, whereas the mass loading for the proposed
mitigation system is 0.63. Therefore, the Navy system must be modified to reduce mass |

loading, a result that will be achieved simultaneously with reducing the mean droplét size

applied to the sISace.

Proposed DD(X) Design ‘ _ :
Based on the feasibility of the water mist fire suppression system already beiné used
on Naval platforms to include a blast mitigation system, a design is proposed for the next

generation destroyer, DD(X). DD(X) is a prime candidate for 2 blast mitigation system due

~ to the geometry of the tumblehome hull form and the perpheral vertical launch system

(PVLS). The sides of the hull slope inward from a maximum beam below the watetline.
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Vertical launch missile cells are positioned directly inboard of the side hull in this design,
creating 2 dead space outboard of the missiles due to the slope of the hull. Figure 23 shows
the design of the PVLS modules, including the dead space outside of the launcher = This

dead space is approximately 2.5 meters deep in the athwartships direction at its deepest

point, close to the watetline.

Figure 23: PVLS Module and Outboard Hull Design

The ship is designed with a bit more side-hull protection as a consequence of the
location of the missile launchers. In order to protect the ship from damage due to
unintentional detonation of the missiles housed in these launchers, current design uses
reactive armor and heavy plating inboard of the launcher. This reactive armor is shown in
Figure 24 along the back side of the module. This design is necessary to protect the ship,
but costly in terms of space and weight. The proposed mitigation system provides an
altetnative means to partially reduce blast loading on the side hull of DD(X) could produce
signiﬁcant savings for the ship design.

Figure 24: PVLS Schematic Diagram
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Figure 24 also shows the geometry of the space outboatrd of the missile launcher.
This triangular space is the proposed location of the blast mitigation system. Potential
concetns include the dimensions of this space being adequate to allow for mitigation of the
impinging blast. The dimensions of the space at its deepest point fall close to the threshold
- ‘where the water mist begins exhibiting mitigation effects. Therefore, a close look at the
.exact dimension necessary on a large scale application to achieve mitigation effects is
essential to the continuation of this design. Unfortungtely, enhancing this issue, the top
portion of this space does not provide the same depth. In terms of a system to protect
against small boat threats, this is not a major issue. The top of this space is well above the
watetline of the ship and outside the reach of an impinging blast wave, but depth of the

proposed installation is still 2 major concern for future work.

This blast mitigation system is applicable for back fit or installation on any Naval
platform using the water mist fire suppression system. DD(X) is proposed here due to the
inherent dead space just inside the hull, but since the water mist blast mitigationAsystem
only requites the installation of additional nozzles in the spaces directly inboard of the hull,

it could be installed on any platform. -

The ptemise of operation for such a blast mitigation system would be to light off
the mist nozzles in the spaces inboard of the hull when an incoming threat was eminent.
This could mean an incoming missile threat in an at-sea scenario or an approaching small
- boat in a littoral or in port scenatio. Constant operation of the nozzles would not be

necessary; further investigation would be required to define a cycling process to maintain

the necessary mass loading of mist in the air.




CONCLUSIONS AND RECOMMENDATIONS

The recent trend of using fine water mist systems to teplace the legacy HALON-
1301 fire suppression systems warrants further study into other applications of the water

mist systems. Shock tube testing and numerical simulations indicate that fine mists (20-30

pm droplet size) may reduce peak overpressures of a shock wave traveling through a space
by up to 70%. Such pressure reductions could be used to mitigate the destructive effects of
a shock wave (initiated by an explosive device) traveling through 2 structure. Although the
mitigation effects are not observed to the same extent for droplet sizes in the 100 pm range
used in the current U.S. Navy water mist system, modification to smaller nozzle apertures

such as those used on many commercially available water mist systems could make such a

system feasible for installation on ships.

Currently these blast mitigation effects have brﬂy been demonstrated in small-scale
shock tube tests and computer simulations. Uncettainty exists as to the scalability of such a
system. ‘The intention of this research was to fully investigate the applicability of such a
blast mitigation system for shipboard use. A study of the degree of mitigation necessary to
make system practical for shipboard installation was conducted. In addition, a theoretical
study of the mechanisms of blast rrﬁu'gation using water mists was undertaken to explain
the phenomena and possible methods of scaling and application. Current research into
water mist blast mitigation was thoroug}ﬂy reviewed land examined for trends to aid in
guiding the direction of future work. Based on these studies, it was determined that water

mist systems do provide enough peak blast pressure reduction to warrant possible

installation on watships.

These trends provide the necessary information to design a scalable blast mitigation
‘system with applicability to real-world shipboard spaces. Given the recent trend toward
tumblehome hull forms in future Naval Combatant designs, thete exists strong applicability
of this system in the “dead” spaces created by the shaping of the tumblehome hull. The

end goal was a feasible design of a blast mitigation system to be used in the outermost
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spaces of Naval Combatants to protect interior vital system spaces. However, concerns
over the depth of mist that a shock wave must travel through in order to achieve mitigation

limit the applicability of this system based on current data.

A blast mitigation system for installation on U.S. Navy ships using water mist is a
still a viable future technology. Based on the strength characteristics of a current ';md a
ﬁiture destroyer, the mitigation system would be required to redu‘ée peak overpressures
from a blast by between 30% and 80% of the initial blast loading pressure. Depending on
the strength of the stiffened panels in the ship, this mitigation could reduce the loading on
the ship structure to a level that makes the probability of plastic collapse or failure of the
panel minimal. More research into the applicability of scaling the current laboratory ana

numerical results to a shipboard space are needed to continue design of the system.

Recommendations for Future Work

Further development of a water mist mitigation system would require quanﬁtative‘
mitigation results for the proposed design using shock tube testing on an actual water mist.
All laboratory data presented here was for some form of dry particle-air mb%ture. The
results for water droplets are all based on numetical simulations validated against the dry
particle results. A method of suspending a representative water mist in the driven section
of a shock tube must be developed to accomplish this testing. Outa et al (1 976) discuss the
difficulties involved in develéping a technique for injecting patticles to achieve a
satisfactorily uniform dispersion in the gas duting shock tube testing. These conditions ate
amplified by the requirement to create the water mist and ensure that the mean droplet
diameter of the mist meets the desigh specifications for the mitigation éystem. Design.and
testing of a method to run shock tube simulations on water mists of varying concentrations
and droplet diameters should be accomplished. The results of such testing would validate
numerical simulations of the mitigation effects and allow more detailed design of a full-scale

mitigation system.

Scaling of these shock tube tests to a more typical shipboard space must be

investigated to further validate current numerical models. This could be accomplished by

70




running live fite tests with water mist in a space and recording pressure profiles along
various locations inside the space. This data would be invaluable to determining the spatial

effects of using the water mist in a space that has a breadth and height comparable to its
depth.

In addition, a close study must be conducted to quantify the exact depth of space
required to achieve mitigation effects from a water mist using the paraineters optimized for
the proposed system in this repott. Actual shipboard spaces should be used to model the
scaling effects of moving from a small shock tube to a large (in terms of breadth and
height) space. The important parameter to achieve out of these tests is the necessary depth
required to ensure that the mist provides adequate mjtigationAeffects and does not cause
enhancement of peak overpressures under any conditions. Determining this depth .

parameter will define whether the mitigation system is feasible for future installation. .

Futute work in the problem of blast loading and mitigation systems for ships
should also include more analysis into the stiffened panel problem. Based on the
theoretical calculations presented in this repott, the loading to failure of a typical ship
stiffened panel is on the order of 10° Pascals. However, the failure loading calculated using
the empirical formulations in U.S. Navy Design Data Sheets is about two orders of
magnitude greater than this. Although the theoretical calculations used in this analysis
involve many simplifying assumptions including mode shape and velocity profile, a wide
variety of methods were studied. Of the parameters varied among these methods,
boundary conditions had the largest effect on the resulting pressure load to failure. None
of these parameters or assumptions account for a discrepancy as large as that between the
theoretical results and the empirical results. The cause of this discrepancy should be
~ identified and understood before lending further credence to the results for the actual

strength of stiffened panels under dynamic blast loading,

Finally, for further development of the specific design proposed for DD(X), the

stiffened panel analysis presented should be tepeated using the scantlings of the armor

plated bulkhead located immediately behind the PVLS. The specific geometry of the space
| 7




outboard of the PVLS launcher should be enteted into numerical simulation tools to
' “establish a mitigation pattern for this proposed installation. Based on the mitigationr levels
likely using a water mist system, the longitudinal bulkhead could be 6pt1'mized. By
optimizing this bulkhead, an analysis could be con‘ducted on the difference in ship
displacement, cost, and fabricability based on the installation of the blast mitigation system.

A significant savings in terms of ship design impact would provide the true determination

of the feasibility of the water mist blast mitigation system.
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®
APPENDIX A: PROPERTIES OF WATER MIST
® Properties of Water Mist:
ps/p is normally ~ 10*3. For fresh water mist in room temperature air: /
kg kg
Pwater = 1000_3 P air = 1293 3 Pwater =1773.395
Y m m Pair
‘ C
cal cal ‘water
C =100 =025 Cooting =—— C =4
water em-K a emK ratio Cair ‘ ratio »
i cal 6 J
HeatofVap := 539 — HeatofVap = 2.257x 10" —
® gm kg
Mass loading for currént U.S. Navy water mist fire suppression is as follows:
gal L
FlowAppRate := 0.065 FlowAppRate = 2.648
, min ft2 minm
ki
MassAppRate := FlowAppRate-p oo MassAppRate = 0. 044—g
. s
Remove the time dependency by assuming a settling rate of 1 meter per minute.
Y
L Concentration := MassAppRate 1028 ~ Concentration = 2. 648§
. m m
To vaporize this amount of mist:
J
EnergyVap := HeatofVap-Concentration EnergyVap =5.977x 106—
o m’
This assumes the water mist is already at 100C. To get from room temperature, must calculate heat
transfer to droplets:
w w BTU
kyip = 0.024— Kyater = 0-386—— hyip =18 hyip = 102. 209l
" mK m-K 2
) : ’ hr-ft"-R m K

D

Nu(D) := h; - — Nul2516 6.m) = 0.107 Nugs:=0.10" Nuj g := 0.42¢
1r




For a representative temperature shift, use AT = 80C AT :=80-K

Qedot (D) = Nu(D)-1-D-kyyper- AT chot(ZS-IO— 6~m) =303x 16 *w  perdrop

Now need to know how many drops are in 1 m”3:

3

‘ n-D -6 —~12
Mass drop(D) = pwater'T Mass drop (25~ 10 -m) =8.181x 10 kg
Concentration ( -6 ) 1 1
ndrops(D) = —— Ddrops 2510 "m/=3237x 10—
Mass drop(D) m3
= : P (25 1078 )— 1277% 10 %
Powertemp(D) =Ndrops (D)-Qcgot (D) OWeltemp 25 ‘m/ = 1.277x —3
. m

The time period for transfer of this heat to the droplets remains to be known. Thié time
dependence is the primary reason that it is likely that vaporization is not a major contributing factor

to the overall energy absorption. However, for example, assume the heat transfer does occur over
the time of the shock pulse:

120210 -
( _6 ) 47
Energytemp(D) = T’Powertemp(D) Encrgyten,lp 2510 "m/ =2.553x 10 ——3
m
( -6 ) 617
Energy;.1(D) = Energyvap + Energytemp(D) Energy ,125-10 "-m/ = 6.002x 10 —3
m

For comparison, calculate the specific energy in the representative pressure pulse impinging on this

volume: ~ (‘“td )

Po := 130.3 psi 80:= 772510 ®.sec tgo = 0.029sec Pt) :=Po-e oo

Area = lvm2 Volume := l-m3 Speed_of sound := 344»—“1
s

10-sec
Energy v ave :=J’ Py(t)-Speed_of sound dt

0.029-sec
5 ] 6 J
Energy,ave =2.387x 10 ——2 Energy it = 6.00210 -—3

m m

NetEnergy := Energy ., . .-Area — Energy i+ Volume NetEnergy = -5.763 x 106 J




/ Remaining

shock energy
out

Mist energy per

R Control Volume
unit volume

(mist filled)

Shock energy in

This method shows that the energy of vaporization of the water mist is over an order of magnitude
greater than the energy of the pressure wave. For verification, use the static equivalent pressure from
DDS 100-9 in a rectangular pulse form to recalculate wave energy:

P, =14.7psi P{=Po
2
7-P, + 4P\ 5| Py )
P :=2P| ———— g == ——— - Py :=(Py + q,)
7P, + Py ) 2 7P+ Pl}
P, = 697.42%si q, = 182.012psi P =312.312psi
6 ’ 6 : 6
P.=4.809x 10" Pa qo = 1.255% 10 Pa Py =2.153x 10" Pa
5 7]
Energy2,, e i=P¢-1-Speed_of_sound Energy2, .ve = 1.481x 10 —2
m

This wave energy is slightly lower than that calculated above for the exponential decay, but of the same

order, validating the results above.




Récognizing that the mass loading for the current Navy system is much greater than most
commercial systems using smaller droplet sizes, recalculate based on a smaller concentration of
water mist which is more representative of the mist applied through the smaller aperture nozzles

needed for this droplet size (reduce concentratlon to 1/4 since reducing mist diameter by a factor
of 4):

Concentration
4

Concen :=

To vaporize this amount of mist;

J
Energyvapz := HeatofVap-Concen Energyvapz = 1.494x 106-——3-

11
This assumeé the water mist is already at 100C. Based on results of previous calculations,
neglect the effect of raising the temperature of the drops from room temperature. Even at this

reduced mass loading, the specn‘" C energy of vaporization of the mist i isan order of magnitude
greater than the energy of the impinging wave.
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APPENDIX B: DYNAMICS OF GAS-PARTICLE
MIXTURES

From Marble (1970):
Ideal Gas Properties: Particle Cloud:
velocity uj particle radius o
temperature T velocity Up;
density p temperature Tpi
particle mass 1 -

number particles/unit volume np,

density Pp=nNp-m
Due to non-interaction, all particles in a local volume have the same velocity vector and
temperature - individual variables could deviate randomly because of Brownian motion

(patticles too large) or random initial conditions (damped eatly in the history of the problem) or
due to multiple particles sizes in mix (assume uniform here).

2
Continuity: Zp+2(p-u)=c

. . . ot X
(volume of particles considered negligible)

0 0
putll + — . =40
atpp aXi(Pp “pl)

By motion equilibruim for local gas motion/acceleration, during the coupled motion of the
gas and particle cloud, the particles adjust to the slip values (difference between gas velocity
and particle velocity) corresponding to the local gas acceleration, while traveling a distance
small compared to the characteristic dimensions of the problem. (Similar formulation for
thermal equilibrium). ' :

Force exerted by a single particle moving through the gas: fo=6-1-0-p- (up - u)

Fotce per unit volume with n non-interacting particles: Fp =n-6-71-0- T (up - u)
where 1y = — 0 _ (up ~ u)
6-m-c-p Fp=pp- -
Ty
is the characteristic time, or the time requited by a particle to reduce its
velocity relative to the gas (slip velocity) by e™-1 of its original value




Limiting form of system results as T goes to 0. In this case, slip velocity (up-u) also goes to 0, but
the volumetric particle force remains finite. This limit results in:

o)
p
Dt

Upi = Uj and thetefore = Constant

In words, this means that particles are "fixed" to their initial mass of gas. If the initial particle
distribution is uniform, pp/p =k = constant. Equations of Motion become:

-1 0 1 0

0 0
._.u>+u~._._U'=——.._p+.—_p___T..
o oy (+dp oy o (4x) oy

Under this model, the system behaves like 2 perfecf gas with modified properties:
Density becomes: p'=(1+x)p

Kinematic Viscosity:

V' = B p= M
(l+1<) (1+K)

: u,-L (I+x) -uy-L
Reynolds Numbet: Re'= —— = ( ) %

Mach Number: M= —=—.

°p

Effective flow operates under larger Reynolds and Mach numbers

Shock structure consists of complete equilibium of gas and particles ahead of and behind
the normal shock. A zone of gas-dynamic shock and a zone in which velocity and
temperature equilibration occur compose the shock structure itself. To separate these

zones, the velocity and temperature relaxation times must be long compared with the
molecular collision time of the gas.




L

Ps 6\2 _ ps = density of the substance constituting the particles
o (_ >1 p = density of gas

¢ = particle radius

1 = mean free path
ps/p is normally ~ 10°3. For fresh water mist in room temperature air:

kg kg
= -4 = L —= p
ps = 1000 3 p :=1.293 3 s 773.395
m ' m P

Marble postulates that the gas-dynamic shock structure is unaffected by the particle cloud
even though the shock may be thin telative to the particle radius. Because the volume
fraction of the particles is negligible, at any time less than 1% of the shock front is being
punctured by particles.

Sommerfield extends Marble's postulations using numetical calculations and experimental

tesults. He first postulates based on loading ratios of the gas-particle mixture for both mass
and specific heat:

cal . cal ~ Cwater
om - K Cair = 0.25- om - K Cratio = Cr Cratio = 4
: ' ~ \ar

Cwater = 1.00-

Mass loading for current U.S. Navy water mist fire suppression is as follows:
gal —5 -1
FlowAppRate := 0.065 - —2 FlowAppRate = 4.414x 10 “ms
' min - ft :

MassAppRate := FlowAppRate - pg MassAppRate = 0.044kg m-2s.1

Remove the time dependency by assuming a settling rate of 1 meter per minute.

Concentration := MassAppRate - 1.0- ﬂr} Concentration = 2‘648kgm-3

m

Therefore, the mass loading (mp/mg)is:
1' .
trat :
MassLoading := Zoncentration ) MassLoading = 2.048
P
Thetefore, the cutrent Navy system has a mass loading highet than that for Whlch the studies at hand

have calculated mitigation effects.




Recognizing that the mass loading for the current Navy system is much greater than most
commercial systems using smaller droplet sizes, recalculate based on a smaller concentration
of water mist which is more representative of the mist applied through the smaller apeture
nozzles needed for ‘this droplet size (reduce concentration to 1/4 since reducing mist
diameter by a factor of 4):

Concentration Concen

Concen = —-4— MasslLoad = MassLoad = 0.512
. P




®
APPENDIX C: BLAST LOAD PREDICTION
Blast Parameter Calculations for 500 Ib TN'T Equivalent Explosion
L J .
From Nonaka, T. (2000):
W = Explosive charge (kg) of Sinkiri Dynamite
D = Stand-off distance (m)
® - TNT Equivalent to Sinkiri: 1239 _ 0635 Sinkripny = 0.63:
1950
example: 500kg TNT --->317.5kg Sinkiri
500 kg- Sinkirip\ = 317.5kg
logp(D, W) :=-1.575log ;— + 1.22¢
VW)
logp(10,317.5) = 0.962 100962 ~ 9.162
¢ kef 5 |
9.162—=— = 8.985x 10" Pa . Pressure = 9.162 kgf/lcm”2 = .8985 MPa
/ cm2 '
From Ramajeyathilagam, K. et al (2000):
® : . .
- (t—td) ; Po is peak pressure of shock front in Pa
‘ ‘ ‘ 0 is decay constant in ps (10*-6 sec)
P(t) = P,-e 6 for 0<=t <=6 W is the charge weight in kg
R is the radial stand-off distance in m
7
® . 1
‘ For TNT: 1\3 -0.22
3 i 5
PR, W) = 52.1610%| 2 BR,W) = 92.5W .| W _ | -
R ) R )
®

P,(10,500) = 4.829x 10/  Pa 0(10,500) = 772.456  ps




®
R-R,
t d(R,Ro,c) = td is the time delay for the pressure wave arrival at distance R
¢ Ro is the shortest radial distance
c is the shock wave velocity
@ t4(10,0,344) = 0.029 '
Can plug td into P(t) to get actual shock front pressure : - (t—tdi)
7 . -6 6i
P; =4.82910 0i:= 772510 tg; = 0.02¢ P(t) =Py
]
T T T
L
@
. | | |
' 0.03 0.032 0.034 0.036 0.038
t
From General Specifications and DDS 100-7f, Missile Blast Pressure Equivalent:
L J

T-(sin(a) + 00225

sin(cx) )

P=
A

P.= static equivalent pressure (psi)
® T = thrust of the missile (Ibs)
o = angle of incidence (degrees)
= impingement are of the surface (in*2)




From DDS 100-9, Nuclear airblast design for surface ships:

P, :=14.7psi P =130.316psi
7P, + 4P P’ )
P :=2P a1 q. =2 L Pg = (P] + q,)
rT SN T 0T T L. s =\F1
TPy + P ) 2{ TPy + Py ©
P, = 697.541psi q, = 182.045psi P = 312.362psi
P, = 4.809x 106Pa Qg = 1.255x 106Pa Py =2.154x 106Pa
From Remennikov, A. (2004):
Empirical Method:
Radial Stand-off Distance (m): R, =1( Charge Weight (kg): W, =50(
RO
Scaled Ground Distance: Z = Z=126
1
3
WO
From Chart: P, = 1-10%Pa P :=1410%Pa
SO * ro- .

These static and reflected overpressures are close to those calculated by Nonaka
above, validating that method of determining peak overpressure. The results using )
Ramajeyathilagam's empirical formula are over two orders of magnitude higher, although the
general form of the equation is correct. An error is suspected in the empirical constant used in
this formulation. :

As expected, the reflected overpressure from the graph is significantly lower than
that calculated from DDS 100-9. This is due to the open, single face geometry used in the
empirical method, vice the confined space. Based on these calculations, a representative blast,
roughly equivalent to that experienced by the USS COLE (~500 Ibs TNT) is as a comparison for
the level of loading ship structures can resist without failure.




Reflected Overpressure

P, = 4.809x 10°Pa

t

Dynamic Pressure

q, = 1.255x 106Pa

88

— (¢]
Po :=130.: 8o :=772.510 6 tqo = 0.02¢ Pi(t) :=Po-e °

T 1 I 1 I

100 -
Py()

50~ ]

0 | 1 | 1

0.03 0.032 0.034 0.036 0.038

Static Equivalent Overpressure

Py =2.154x 106Pa



APPENDIX D: MATERIAL CONSTANTS

Properties of Steels Used in Ship Structures

For Medium Steel (MS or OS) Components:

o . 8
ms = 34ksi Syms = 2.344x 10° Pa

¢ y

y

Gten_ms = 58 ksi erupms =024

For High Strength Steel (HSS) Components:

ns = 3.516x 10°Pa

Oyhs = 51-ksi Sy

Sten_hs = 70-ksi Eruphs = 0.23
For HY-80 Components:

y80 = 80-ksi Sy80 = 5.516x 108Pa

Sten 80 = 95-ksi Erup80 = 0.20
For HY -100 Components:

Oy100 = 100 ksi Oy100 = 6.895x% 108Pa

Sten_100 \:= 110ksi rupl00 = 0.18

v = .30

By = 29.6 10°ksi

kg
Pms = 7833—3

m

Bpg = 29.610 ksi

kg
Phs = 783_3—5

m

Egg = 29.610°ksi

kg
m

Ej00 = 29-610°ksi

o
P100= 7833—“;

m

Eps =2041x 10 Pa

Ems

G = ——
M 2.(1+v)

Eyg =2.041x 10" Pa

Ehs

G

"2+ v)

Egg = 2.041x 10’ Pa

Ego

Ggp = ———
80 21+ v)

11

E100

Gyop = —————
1007 5 (14 v)



DDG-51

Tg = .3438in

Bg = 27.3%in
Lg = 8-t
Hg =9.134t-

NoStiffg =3

.2
Ag = 1.81.in

BFg =3.94in

. 4
Ig = 6.51in

Panel Characteristics for DDG-51 and DD(X)

Panel Geometry

Deck or Girder

Deck or Girder

L

Panel Characteristics
T = Plate thickness
B = Stiffener spacing
L = Frame spacing
H = Deck height
Number of Stiffeners
Area of Stiffenet
Breadth of Flange

Moment of Inertia

DDX)
Ty = .4375in
Bx =23.99in
Lx = 7.546ft
H, = 9.9%ft

NoStifg( =4

2.2
. AX:= 2.1kin

BF, :=3.94in

Ix = 14.2‘in4

Deck
Height




o
DDG-51 Panel Stiffener Characteristics DD(X)
: D, :=590in Depth of Web D, = 7.8%in
J ¢ ’
TW, = 170in Thickness of Web TW, :=.17Gin
TFg := 215in Thickness of Flange TF, := .205in
o Ayebg = TW,(Dg — TF,) Area of Web Aebx = TWy(Dy - TF,)
Aflag = TFy'BF, f Area of Flange Aflax = TFBF,
Plastic Flow Stress
i _ (Gyhs + Gten_hs) _ (Gyhs + cStén_hs)
4 - 4.
Oog = 6.05x 10 psi Oox = 6.05x 10 psi

® _ Cog = 6.05% 10" psi _ Gox = 6.05% 10 psi
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APPENDIX E: PLATE BENDING CALCULATIONS
Calculation of Bending Moment for a Stiffened Panel using Sample Geometry
o
Sample Plate Charactetistics:
Thickness:  H := .4375in L= 12in B := 12in
o ' o = (Uyhs + Gten_hs) Plastic Flow Stress
- 2
Sample Blast Charactetistics:
p = 130.316psi p =8.985x 10°Pa
o
1:=0210 s
Plastic Collapse Moment:
Plastic collapse moment of solid cross-section: :
o ‘ (50-L-H2 3
M, = M, =3.925x 10" N-m
4
Geometry:
Assuming a dishing mode shape between stiffeners and frames:
®
i Undeflected Shape
ZFGirder Stiffener% GirdeﬁS
® Loading
I
}_Lillilliilil{,ll llililliii—i
Deflected Shape
o =TT T T ="=7"" aTTTTTT T T T ]

___Modeled Portion




Approximate the modeled portion of the stiffened panel as a beam (2D) with a fixed end condition to
enforce the zero-slope inflection point mid-way between stiffener and frame:

£
S A P P A A A A A A
—> x

M]ef[ Y

N
N Mdg}-t

Stiffener q*B

Assume that reaction force for the stiffener represents the entire distributed load, q (= pressure pet
unit width) * B (length between stiffener and next structural member).

5k
q=plL q =2.739x 10 —f L = 0.305m
S

From Beam tables, superposition of two loading cases to get the total moment:

_ 4 2 2
M niform®™ = E-(&B-x B -6)

~4000
0.1 0.2 0.3
X
M ® = B (4x-B)x< B) + —(q-B)'—E -2 (=2 5
concentrated 8 ) ) 2 8 2 ) 2 )
5000 T I

M concentrate d( X) 0

—5000
0
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®
Migtal (¥ = Mypiform(® + Mconcentrated (¥
° 2000 , ,
‘ 1000
0
Miotal(X)
~1000
®
—2000
] | ]
3000
0 0.1 0.2 0.3
X
i M. =M (E\ ;
center *~ “'total 2) . Menter = —2-12x 10° Nem
3
| Mpnds = Migta) (B) Mgpgs = 1.06x 10° Nem
@
This representative loading case is used to show that the maximum moment will be at the at the
point of inflection produced at the stiffener (x = B/2). Now, symbolically solving for this moment
and setting equal to the plastic collapse moment, Mo:
. ’ 3
® M, =3.925x 10" N-m
2 2
q,'B -q,'B
Mynif = Mconc = Miot = Mynif + Mconc
24 8
® My = M For Plastic Flow / Failure
-1 . . . .
M, = —-qO-B2 Neglect negative sigh - Mo is for either pos ot neg moment

94
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Calculation for Panel from Frame to Frame and Deck Girder to Deck Girder
Plastic Collapse Moment:
® 2 2 )
: Sog Lo Hy 4 Sox Ly Hy 4
Mg = Mg = 1939x 10" Nom Mox= =7 Mgy =2962x 10 N-m
2 2
qO.B _qO.B
Mynif = Mcone = Mot = Mynif + Mconc
PY 24 8
My = M, For Plastic Flow / Failure
Mo = ﬁ-qo-B2 Neglect negative sign - Mo is for eithet pos or neg moment
®
M ,-12 M, 12
__og 4 kg _ Vox 4kg.
dog = _T Qg = 3.005x 10 —2 Qox = 5 Gy = 3-833x 10 —2
B, B s
g s X
9 _ Yog 4 _ Yox ' 4
Pog = T Pog = 1.232x 10 Pa , Pox = — Pox = 1.667x 10 Pa
. L _ .
Now, determine the need for inclusion of dynamic terms by looking at kinetic enetgy
° Average strain rate to rupture will be: t = 0210 3s
€
h
€dot = _ruf_s Eqot = 1-15x 103Hz
For strain rate effects, include Cowper-Symonds relation:
[ For steel: 1 8 8
D =40 ni=s Oyhs =3.516x 10°Pa Oy po =4.826x 10 Pa
1 Gyp = 4.171x 10° Pa
— og -
n
. Sdot\ 9 5 .
° oy =g 1+ Sodyn = 1:234x 10" Pa Codyn = 1.789% 10” psi

95




2 2
c -L.-H G L H, :
__ odyn"gt'g 4 __ odyn Ly 4
Mogd = f Mogd =5735x 100 Nm M4 = ——4—— Mgxd =8.76x 10 N-m
M_,q-12 M, 412
) ogd 4 kg L oxd 5 kg
Qogd = '—2— qud = 8.887x 10 —2 doxd = ’—i— Qoxd = 1.134x 10 "5'
: Bg S By s

Yogd 4 Yoxd . 4
Pogd = L— Pogd = 3.645x 10 Pa Poxd = T Poxd = 4-929x 10 Pa
g




o
Calculation for Panel from Frame to Frame and Stiffener to Stiffener
(use 2*B as the span between stiffeners with one stiffener at midspan)
o ‘ , Plastic Collapse Moment:
. SoglgHy _ 4 B SoxLxHy 4
Mg = —=——— Mgy =1939x 10'Nom Moxi= == Mgg=2962x 10'Nm
2 2
® qy'B v —-qy'B
unif = 75 Mcone = 3 Myor = Mypif + Mcone
M = M, For Plastic Flow / Failure
-1 . . . .
Py M, = E-qO-B2 Neglect negative sign - Mo is for either pos or neg moment
M, -12 M 12 '
- k; k;
Qog = ——  qgq = 1.202x 1002 Aoy = — Qoy = 2393x 102
2 g 2 2 2
Bg s By s
[
qu 4 qOX . 5
Pog = L_ Pog = 4.929x 10 Pa Pox =T Pox = 1.04x 10" Pa
g L
® ' Now, determine the need for inclusion of dynamic terms by looking at kinetic energy
Average strain rate to rupture will be: t= 0210 s
€ruphs 3
£dot == _'r_ 8ot = 1.15x 10" Hz ‘
® For strain rate effects, include Cowpet-Symonds relation:
For steel: 1 8 - 3
D =40~ ni=5 Oyhs =3516x 10°Pa oo e =4.826x 10" Pa
1 Gog = 4171 10° Pa
n \
o _ £dot ) 9 ' 5 .
Sodyn = %og| 1| 3 Codyn = 1234x 10 Pa Sodyn = 1.789% 10 psi
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[
Sodyn-LeHy” Sodyn Ly
.__odyn"g"g 4 _ Podyn"™x B 4
Mogd = 7 Mogd =5735% 10 Nem Mg = 7 Mg = 8.76x 10 Nom -
@
M -12 : M 412 :
. ogd . 5 kg _ _oxd _ 5 kg
Qogd = —2— qogd =3.555% 10 —5 Qoxd = 5 “Yoxd = 7.078x 10 —2
Bg s v By s
q Qoxd .
oz = Poxd = 3.077 10°Pa

5
o ' Pogd = L— Pogd = 1.458x 10" Pa Poxd = L
g




APPENDIX F: PLATE PLASTIC COLLAPSE
CALCULATION

Dynamically Loaded Plate Analysis from Jones (1997) for Sample Geometry

Plate Characteristics:

Thickness: H:=04375-in L=12-in B:=12-in
4 2 2 4
“d -
Loween+ 2L Lwiy) + Lwiey)= 2
dx dx” dy dy D
* E-H E
— e — -+
o ( 2) L 2-(1+v) So :=‘—-~—((Sy Gten) Plastic Flow Stress
12-\1-v 2
Blast Characteristics: Po = 130- psi 12021075
Static Plastic Collapse Pressure of Rectangular Plates
. iy I Use flow stress, c0, rather
Plastic collapse moment of solid cross-section: ( o B Hz than yield stress to get
o —— plastic bending moment
4
Plastic collapse moment of solid x-section of unit width: o - H2
[} 4 -2
= 2 Mg = 1.288x 10 kgms
Simple Supports:
J
[}
-— - - x S - - -
7 2B
y
V.
2L
p
N A A A A P A
X
- - - > - - 4 1
z
¥
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Lower bound (Johansen Yield Condition):

xz\ yz\ - -Mp-x-y
My(x) =Myl 1 - _2 ) My(y) =Mg| 1 - _2 Mxy(x’)’) = '—BL_
L°) B”)
, , & 20 &
Governing Equation: —My+2-—=Myy +—M, +p=0
2 y 2y
oxX 0x0y dy
2
Substituting and solving for p: {1 L (L\ }
Plower_ss =2 Mo- L2 _ Plower _ss = 8.317x IO5 kgm'1 s,-2
Upper bound (using energy method and kinematically admissable transverse velocity profile): '
i : . B- tan\¢) - ‘
Velocity Profile: Region | (triangles at ends) Wdot = Wot - (——M '
' B- tan(¢)
ion i (B-y)
Region Il (center section) Wdot = Wdot - ———=
B
Each of these regions remains rigid with plastic flow concentrated in the plastic hinges at the region
boundaries.
|
: |
x X
. -
I y 11
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Angular velocity at the outer boundaries (simply supported) are:

d, _ Wot
dt . B-tan(p) ’
Internal Energy Dissipation in plate: Dot = 4- Mg - Wyt - (% + cot(d;))
; . 2 L tan(d))\
External work due to uniform pressure p_upper: Edot = 2+ B” - Wot - Pupper | = — ____)
B 3
B:= B (aspect ratio of plate) \
: ' o
Equating these energies and solving for p_upper: Pupper = 6- M- tan(¢) /

B®. (3-8 - tan(s))

Assumptions are made to solve for ¢, the angle of the plastic hinge line along which the velocity profile

follows. Namely, the minimum p_upper occurs when the derivative of p_upper with respect to tan¢ is
zero. Solving for tan¢, get:

tan(¢) =B+ J 3+ [32 which can then be substituted into the energy solution for p_upper
6-M, 5
Pupper_ss = 5 Pupper ss = 8.317x 10" Pa
w (55 -p)
Partially restrained supports (applying moment m to outer bound): 0<m< Mo'

m_supp determines the level of restraint on supports:

m=0 for simply supported, m=Mo for fully clamped Mgupp = 1.0- M

Gives additional internal energy dissapation around plate boundaries:

B L)
dot_b m- Wdot (B'tan(d)) + B}

Add this to internal energy for the simple support case (from above) for:

L 1
Ddot_tot=4'Mo‘Wdot-(—+ \(1+£_\
o)

B tan(y)




The external work from p remains the same as above. Equating and solving for p:

(2o

M, )
Pupper_fc = 6-M,-

> Pupper fo = 1.663x 10°kgm s
. 2 -
) Bz-(\f3+ﬁ —B)

-2

For the fully clamped case, the lower bound is:

(1 + Bz)

B2

-2

6 -1
Plower fc:=4 - Mg- Plower_fc= 1.109x 10 kgm " s

For a fully clamped square plate, B goes to 1 and a numerical solution for the exact static collapse press
can be found: :

M -1 -
Pe fo=10.71- — Pe fo= 1.485x 10°kgm ' s
, L2
Dynamic Plastic Behavior: Governing equations for rectangular plates
6_Qx + 6_Qy +p=p—w note inclusion of inertia term in transverse direction
ox . oy ot
a_M + a_.M - Q =0 - . . .
. X dy Xy =X Curvature Definitions in x and y directions:
2
2 My + &My — 0y = 0 L
oy ox X dy 0Ox0dy

First look at the case of a rectangular pulse of pressure p_o lasting from time=0 until
time=1 ‘

1:=20-10 4s p(t) = py - dunif(t,0,t)

5-10 T

p(t)

0 1-10
102 t

2.10 *



Simply supported square plate: Static Collapse Pressure

&M o
Pe s = —— Pe ss=8317x 10°kgm s> (from above)
L2 7 '
o _(x+y)-m Plastic hinges form symmetrically along diagonal »
at W= Waot- (1-2) A%Y) = L and y axes, therefore can consider a single
‘ quadrant.

P~ , ,
IJ,J,J,J,lliiij,\L&Jlié,J,\ié /
| - _ - pal > - - -IIH
5 je) | P
- - - 2 >—- - 4 fL
3 y

K
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These equations are plugged in for each time period (0-1, 1-T) where 1 is the end of the pressure pulse
and T is the end of motion in the plate.

Po

Ngg == ngs = 1.078

Pc_ss

For values of n greater than 2, a yield violation develops near the plate center, requiring a modification of the
above transverse velocity field into three distinct phases:

fe— _L - | _ZL - 7 Wdot = W dot 0<z<
Wi C(1-2)
Wdot = Wot - o<z
1 ( - g0)
-';oL
L L | zL o
™~ _ _ _ i _ _ 1 _
' w l/
W.
-
&
o
. L
! - - -
/
(solution admissable for n greater than 2):
2 (3 “Mss — 2) . :
W ss=Nss Pess* T - T Wi ss=0.011m
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DDG-51 Panel from Frame to Frame and Deck Gitder to Deck Girder

Plate Characteristics:

Thickness: 11 :=0.3438- in Lo=80-ft B:=9.13-fi
4 2 2 4 -
d—4W(x,y) +2 —d—zd—z wix.y) + %W(x,y)= =2
dx dx” dy dy D
For HSS Components:
oy =51 ks oy = 3.516x 10 kgm ' s™ E:=296-10-ksi  E=2041x 10" kgm s
. . kg
Gien = 70 ksi Erup = 0.22 p =7833. — v=.3C
o3
E.-H E
Di=—— Gi=—F (Gy + Gten) Plastic Flow Stress
. Cpg =7
12.(1_\)) 2 (1+v) o 2
‘Blast Characteristics:
p0:=1-106-Pa 120210 -5

Static Plastic Collapse Pressure of Rectangular Plates

Plastic collapse moment of solid cross-section:

Plastic collapse moment of solid x-section of unit width: on- 2 3 5
Mai=— M, = 7.952x 10" kgms~

Simple Supports:




Lower bound (Johansen Yield Condition): Define:

N W

. L
pr 2

Lpr =

2 ) y2 ) My x-y
My(¥) :=Mg| | - —— My()’) =Mp| 1 -— Mxy(X,}’) =

Lye”) Bor’) oo

- - & 20 &
Governing Equation: ___21\/1X +2- = Myy + _2My +p=C
d

0x oxdy

2
Substituting and solving for p: [1 + L + (E\\ :l
B

B)

Plower ss =2 Mg - -2

2 Plower ss = 2.829x 10t kg mls

Ly

Upper bound (using energy method and kinematically admissable transverse velocity profile):

Velocity Profile:

Region | (triangles at ends) Waot = W ot - (By: - tan(9) - %)

By - tan(9)

\

Region Il (center section) Wdot = Wdot - —(E‘-)ﬂ

Bpr

Each of these regions remains rigid with plastic flow concentrated in the plastic hinges at the region
boundaries.

7
W
¥
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®

Angular velocity at the outer boundaries (simply supported) are:

d 0= Wdot
dt Bpr - tan(d))
Internal Energy Dissipation in plate: Dot = 4+ Mg - Wot - (% + cot(¢))
Ext . . 2 L tan($))
ernal work due to uniform pressure p_upper: Edot =2 Bpr™ - Wot * Pupper * | = — _____)
B 3
B = B (aspect ratio of plate) \
-, | (o)
Equating these energies and solving for p_upper: Pupper = 6- Mo - tanl¢

B> (3- B - tan(4))

Assumptions are made to solve for ¢, the angle of the plastic hinge line along which the velocity proﬁle'

follows. Namely, the minimum p_upper occurs when the derivative of p_upper with respect to tang is
zero. Solving for tané, get: '

‘tan{¢) = - + J 3+ 52 which can then be substituted into the energy solution for p_upper
6- M, 4
Pupper_ss = > Pupper_ss = 2.831x 10 Pa
2 , 2
Bpr - ( 3+B - B)
Partially restrained supports (applying moment m to outer bound): 0<m< Mol

m_supp determines the level of restraint on supports:

m=0 for simply supported, m=Mo for fully clamped Mgypp = 0.50- M,

Gives additional internal energy dissapation around plate boundaries:
Bor L)
Bpr - tan(¢) B )

" Add this to intemal energy for the simple support case (from above) for:

Dgot b=4-m- Wqqt - (

L 1
Dot tot =4 Mg Wot - (E + tan(d))\ . (1 T Mi)
0
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®
The external work from p remains the same as above. Equating and solving for p:
o 1+ Dsupp )
‘ 6- M M, .
Pupper_pc =0 Mo~ } =32 Pupper_pe = 4.247x 10t kgm s
By - (\] 3+p - B)
4 For the fully clamped case, the lower bound is:
9
(1 +8 ) 4 12
Plower fo:=4-Mg- ) Plower_fc=3.783x 10 kgm s
Bpr
o : For the fully clamped case, the upper bound is:
12 M, 4. 12
Pupper_fc = Pupper_fc = 5.663x 10 kgm s

8,2 ({3 62—3)2
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. .
DDG-51 Panel from Frame to Frame and Stiffener to Stiffener
Plate Characteristics:
® Thickness: H,;=03438-in" L=80-1 B:=27.39-in
4 2 2 4 _
d—A,W(x,y) +2 d—zd—z w(x,y) -+ —d—4W(x,y)= =
dx dx" dy dy D
For HSS Components:
oy =51 ksi oy = 3.516x T kgm'1 g2 E:=29.6. 10° - ksi E=2041x 10! kgm'1 52
Gten = 70- ksi Eryp = 0.21 o = 7833. K& v =G
ten == 70- rup == 0.22 = c— =.
b . o
E- H3 E »
D= G=— (Gy + Gten) Plastic Flow Stress
' ( 2) 2-(1+v) o= ————"
12.\1-v 2
e Blast Characteristics:
Po:=1- 10%.Pa  1:=02.10 2.5 Po=1x 106kgm'ls'2_
o Static Plastic Collapse Pressure of Rectangular Plates (Jones p.37)
Plastic collapse moment of solid cross-section:
o' B- H2 _
0= 1
Plastic collapse moment of solid x-section of unit width: So- HZ 3 )
® Mai= M, = 7.952x 10" kgms"

4

Simple Supports:




Lower bound (Johansen Yield Condition): Define: By = B Loy = L
2 2
x2 \ y'z \ M,y X-y
My(x) =M,| 1 - —2 My(y) =Mg| 1~ —2 Myy(x,y) = .
Lye”) Bu') e Tar
. - & 29, . d :
Governing Equation: Z oMy +2- == Myy +—5My +p=C
L2700y i
ox” 0x0y dy
. 2
Substituting and solving for p: 1+ Ly, L)
Plower_ss = 2 Mo 2 Plower ss = 1.796x 10 kgm ' s
Lpr -
Upper bound (using energy method and kinematically admissable transverse velocity profile):
H . B, -t —_
Velocity Profile: Region | (triangles at ends) Waot = Weor - (Bpr - tan(8) — xpr)
By tan(d))
Region Il (center section) ! Waot = Wot - EPL)’)
B
pr
Each of these regions remains rigid with plastic flow concentrated in the plastic hinges at the region
boundaries.

i Y 13
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Angular velocity at the outer boundaries (simply supported) are:

dog - W ot

dt By tan(9)

Internal Energy Dissipatioﬁ in plate: Dgot = 4-Mg- Wyot - (% + cot(d)))
External work due to uniform pressure p_upper: Egot = 2- Bpr2 - Wdot * Pupper - (1“- - tal(@-)
B 3

B = B (aspect ratio of >plate)
L

(1 ' taf(¢))

By (3-B - tan(9))

Equating these energies and solving for p_uppér:

Pupper = 6 Mo -

Assumptions are made to solve for ¢, the angle of the plastic hinge line along which the velocity profile
follows. Namely, the minimum p_upper occurs when the derivative of p_upper with respect to tan¢ is

zero. Solving for tang, get:

tan(¢) = -B + \I 3+ |32 which can then be substituted into the energy solution for p_upper
6-M, 5
Pupper_ss = 5 Pupper_ss = 1.825x 10" Pa
2 2
By - (\] 3+p - B)
Partially restrained supports (applying moment m to outer bound): * ~  o9<m< Mo.

m_supp determines the level of restraint on supports:

m=0 for simply supported, m=Mo for fully clamped Mgypp = 0.5+ M

Gives additional internal energy dissapation around plate boundaries:
_ B L)
Bpr - tan(¢) B )

Add this to internal energy for the simple support case (from above) for:

Dot b=4-m- Wdot‘(

Dgot tot =4 Mo Wot - (% + m) . (1 +M£)
o
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The external work from p remains the same as above. Equating and solving for p:

(1 . Msupp )

M0)

By J3+BZ—B)2

=6-M,- -1 -
Ppe=6-Mo Ppc = 2.737x 10 kgm ' s

For the fully clamped case, the lower bound is:

-2
(1 +B ) 5. -1 22
Plower_fc:=4-Mo- _‘2_' Plower_fc=2.843x 10" kgm "5~
Bpr '
For the fully clamped case, the upper bound is:
12 MO 5 12 :
Pupper_fc == Pupper_fo =3.649x 10 kgm " s

B2 (3 32-6)2
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DD(X) Panel from Frame to Frame and Deck Girder to Deck Girdet

Plate Characteristics:

Thickness:  H:=04375-in Lo=1754-fi B:=9.99. ft
4 2 2 4 _
Lowen+ 2 LD wiey) + Lwey= 2
dx dx" dy dy D
For HSS Components:
oy =51-ksi oy =3.516x 10 kgm™' 5™ E:=296-10 -ksi  E=2.041x 10" kgm ' s?
. | . kg '
Gten == 70 ksi Eryp = 0.22 p :=7833- -—; v:=.3C
m
E- H3 E
De=—F— G=—= (Gy + Gten) Plastic Flow Stress
2 . G = .
12.(1_\,) 2 (1+v) o 2

Blast Characteristics:

6 3

Po:=1-10-Pa 1:=02-10 ~-s Po=1x 106kgm-1

-2
S

“Static Plastic Collapse Pressure of Rectangular Plates (Jones p.37)

Plastic collapse moment of solid cross-section:

oo B- H2
03=_—4—
Plastic collapse moment of solid x-section of unit width: 6o HZ . 5
' Mei=— M, = 1.288x 10 kgms"
Simple Supports:
b - —— — . t——— _}__x - — - — B
\ly
L
i
RS P A A A A A §
{7
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) " B L
Lower bound (Johansen Yield Condition): Define: =— Ly ==
Bpr 5 Lpr 5
x2 \ . y2 \\ . _M0 “X-y
My(x) :=Mg| 1 - —— My(y) =Ml 1 - — Myy(%,y) = ———
2 . 2 Bpr : Lpr
Lpr ) BPr )
- , & 99 2
Governing Equation: =My +2- =M,y +—=M, +p=C
2 X Xy 2 Y
X 0x0y dy
» . : 2
Substituting and solving for p: 1+ L + L\
~2.m,. LB \B)J .
Plower_ss = © 2 : " Plower ss = 4.534x 10 kgm 5-2
Lpr -
Upper bound (using energy method and kinematically admissable transverse velocity profile):
i . ' . B, -t -
Velocity Profile: Region | (iangles at ends) i = Wy - (Bpr - tan(6) — xr)
By - tan(9)
Region Il (center section) Waot = Wot - -(?}-
. or
Each of these regions remains rigid with plastic flow concentrated in the plastic hinges at the region
boundaries. )
|
| —
‘ |
— —_— ‘ } »X - 2 F— z i
¥
134 y 1
— .

TL.

S




Angular velocity at the outer boundaries (simply supported) are:

do- Wdot

dt Bor -’ tan (d))

Internal Energy Dissipation in plate: Dot = 4+ Mg - Wot - (% + cot(d)))
E . ) 2 L tan(9))
xternal work due to uniform pressure p_upper: Edot = 2 Bpr - Wot* Pupper * | = — _____)
B 3
B = B (aspect ratio of plate) ’ \‘
L (1 .
tan(g) )

Equating these energies and solving for p_upper:

Pupper = 6- Mo -

Bpr - (3- B - tan(¢))

Assumptions are made to solve for ¢, the angle of the plastic hinge line along which the velocity profile

follows. Namely, the minimum p_upper occurs when the derivative of p_upper with respect to tan¢ is
zero. Solving for tang, get:

tan(¢) = -B + \} 3+ [32 which can then be substituted into the energy solution for p_upper
6-M, . o
Pupper_ss = > Pupper_ss =4.552x 10 Pa
2 , 2
Bpr - ( 3+B - ﬂ)
Partially restrained supports (applying moment m to outer bound): 0<m< Mo.

m_supp determines the level of restraint on supports:

m=0 for simply supported, m=Mo for fully clamped Mgupp = 0.5 Mg

Gives additional internal energy dissapation around plate boundaries:
Bpr L)
Bpr tan(¢) B )

Add this to internal energy for the simple support case (from above) for:

Dgot b=4-m- Wdot‘(

L 1
Dot _tot = 4-Mgy - Wyot - (E + Ia—n_(d)—)\ . (1 + Mﬂ)
o
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The external work from p remains the same as above. Equating and solving for p:

(1 N Msupp |

M, )
2
B2 (J3+52-p)

For the fully clamped case, the lower bound is:

(1482

Bor

For the fully clamped case, the upper bound is:

Ppc =6 Mo Ppe = 6.828x 10 kgm '

2

4, -1 -
Plower_fc'= 4-M,- Plower fc= 6.123x 10 kgm " s

12- M,

2
B ({3452 -p)

2

. 4 1 -
Pupper_fc = Pupper_fc = 9-104x 10 kgm " s
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DD(X) Panel from Frame to Frame and Stiffener to Stiffener

Plate Characteristics:

Thickness: H;=0.4375-in L:=754. fi B:=23.99-in
4 2 2 4 _
Lo+ 2Ly + Lwiy= 2
dx dx" dy dy D
For HSS Components:
oy =51 ksi Gy = 3.516x 1081<gm'1s'2 E:=296-10-ksi. E=2.041x 10”kgm"' g2
. . kg
Gtep = 70 ksi €ryp = 0.2 p =7833. = v :=.3C
m
E- H3 E .
D=—— G- ——(—— (Gy + Gten) Plastic Flow Stress
2 . Gy 1= ———————
12'(1_\’) 2 1+v) o 5
Blast Characteristics:
po=1-100-Pa  1:=02.10 -5 po=1x 1°kgm™ s

Static Plastic Collapse Pressure of Rectangular Plates (Jones p.37)

Plastic collapse moment of solid cross-section:

6o -B- H2
oET—
Piastic collapse moment of solid x-section of unit width: G- H2 . )
Ma= 2 M, = 1.288x 10 kgms’
Simple Supports: '
\fy
L
P
Lol i EXJ. L i ] N
1
5 - yox
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L
Lower bound (Johansen Yield Condition): Define: Bp = B Ly ==
2 2
2 ) | 2) M
. ! X . . - cX-y
ot Mx(¥) :=Mo| 1- — My(y) :=My| 1 - y—2 C Mygxy) = _°__.
Ay’ ) B') ol
. . & 20 d2
Governing Equation: _iMX +2: 25 Myy + _ZMY +p=C
0x 0x0y dy : :
@
2
Substituting and solving for p: {1 + Ly (_];) }
B B
=2 My e~/ 12
Plower_ss o L 5 Plower ss = 3.705% 1 05 kem 1 s
T o
| Upper bound (using energy method and kinematically admissable transverse velocity profile):
; . B, -t -
Velocity Profile: Region | (triangles at ends) Waot = Wit - (Bp - tan(0) Xpr)
' By - tan(d))
® : ' Region Il (center section) Waot = Wot - M
. ’ Bpr

Each of these regions remains rigid with plastic flow concentrated in the plastic hinges at the region
boundaries.




@

Angular velocity at the outer boundaries (simply supported) are:

dg_ Wot

@ dt By - tan((b)

Internal Energy Dissipation in plate: Dygot = 4+ Mg - W - (% + cot(d)))

External work due to uniform pressure p_upper: Egot = 2- ]3pr2 - W ot - Pupper * (% - tim—(i))

3
o B = B (aspect ratio of plate) v \
L ( B(
Equating these energies and solving for p_upper: - Pupper = 6- Mo - tan{¢ )
: 2
Bpr - (3-8 tan(9))

® Assumptions are made to solve for ¢, the angle of the plastic hinge line along which the velocity profile

follows. Namely, the minimum p_upper occurs when the derivative of p_upper with respect to tan¢ is

zero. Solving for tang, get:
, tan(q,) =B+ J 3+ |32 ~ which can then be substituted into' the energy solution for p_upper
o

6- M, 5
Pupper_ss = > Pupper_ss = 3.764x 10" Pa
2 2
Bpr - (\] 3+p - B)
® Partially restrained supports (applying moment m to outer bound): . 0<m< Mol
m_supp determines the level of restraint on supports:
m=0 for simply supported, m=Mo for fully ctamped Mgypp = 0.5- M,
® Gives additional internal energy dissapation around plate boundaries:
Bpr L\
Diot p=4-m- Wyot- | ———F< + =
By - tan(¢) B
Add this to internal energy for the simple support case (from above) for:
dot_tot o Wdot B tn ( ¢) ) M, )
120




®
The external work from p remains the same as above. Equating and solving for p:
. (1o 2m)
0
Ppc=6-Mo- > Ppc = 5.646x 10 kgm ' 57
2 ([, 42 )
Bpr -\y3+p -B
L 4
' For the fully clamped case, the lower bound is:
2
(1 + ) 5 -1 -2
Plower fc:=4 Mo - ——%— Plower_fc=5.939x 10"kgm "s

° | , L
: For the fully clamped case, the upper bound is:

12- M, 2

) 5 -1
pupper_fc = pupper_fc =7.528% 10 kgm S

B2 (3 BZ—J




APPENDIX G: CALCULATIONS BASED ON DDS 100-7

Calculation for Panel from Frame to Frame and Deck Girder to Deck Girder

" Uniform load over a x b plate - values at center :

_pPb2 _—aPb’ )
Omax™ T, Ymax™ S React = 1-Pb
E-h

.\ :
' Maximum stress ~ Maximum displacement Maximum reaction at long
side (what stiffener must

support)
, Using flow stress for cmax and solving for P:
L Ly
B_g =(0.876 <__These get B __> — =0.755
g (from table) X
Bg = 2874 By = .2874

Must redefine sizes in English units without unit calculations on:
hy = .4375 inches

hg = 3438 inches
bg = 109.56 inches b, = 119.88 inches
lg = 96 inches 1, :=90.48 inches
Sflow = 6.05 104 psi
2 2
Sflow g Sflow hx
Pynifg = b8 Pynify = oo
ng x'Bx
=227.106 Pynif = 336.107

Punifg
These pressures are both in psi

Pads g = Punifg PSi Pags x = PunifcPsi

6
Pyds_x = 2317x 10 Pa

’ 6
Pgds g = 1:566x 10" Pa




®
Calculation for Panel from Frame to Frame and Stiffener to Stiffener
Uniform load over a x b plate - values at center :
® _ pPb? _—apb? )
Omax= T, Ymax= 3 React,x= v-Pb
h E-h
Maximum stress ~ Maximum displacement Maximum teaction at long
side (what stiffener must
® , suppott) ‘
Using flow stress for omax and solving for P:
L Ly
Eg— = 3.505 <--These get B —_>> E =3.775
g (from table) X
Ly
° | By i= 07134+ | —= -3 (0.7410- 0.7134 (interpolation steps)
‘ s )
Ly ) |
By = 0.7134+ | — —3 .(0.7410- 0.7134)
BX :
PY Bg = 0.727 By = 0.735
Must redefine sizes in English units without unit calculations on:
h g = .3438  inches hy = 4375 inches
bg = 27.3¢ inches by = 23.99 inches
o ' 1, =96 inches 1, :== 90.55 inches
Sflow = 6-05 104 psi
2 2
Sflow g Sflow Nx
Punifg = — Punifx = —————
g b.-p uni b ‘
® g Pg x Px -/
Pynify = 358.955 Pypify = 656.939
These pressutes are both in psi
Pads g = Punifg Psi Pdds x = Punific PSi
@

6 : 6
Pygs g = 2475 10'Pa Pyqs_x = 4:529% 10°Pa




®
APPENDIX H: CALCULATIONS BASED ON DDS 100-9
e Ambient Pressure - Peak Incident Overpressure Duration of Positive Phase
P, :=14.7psi P, :=130.316psi 1:=0210 3'sec

Max Reflected Overpressure ~ Dynamic Pressure  Stagnation Pressute  Peak Avg Pressure

® 7P, + 4P 5 P12 \
P = 2P| ———— =75 Pi=Pi+q, . P =P -04q,

%
TP, +Py ) 7Py + Py |
. = 697.538psi 4, = 182.044psi P, = 312.36psi P, = 57.498psi
' Get plastic section modulus at midspan, Zpm:
® p P P
Agotg = TgBy + Ag Apitg = Tg'By Aoty = TyBy + A, Apitx = TxB,
A _ .2 A, an aag 2
totg _ 5.613in2 Apltg =9.417in totx _ 6.303in2 Apltx = 10:4961n
o . .
Both cases have Atot/2 < Aplt so they cortespond to regime 1 in Table 3:
. i Atotg ‘ Atotx
' namg =~ , o namx = o
& 2B, 2B,
o _1 2 _1 : 2
Zlmg = 2'Bg'dnamg ’ Zimx= E'B ‘dnamx
D, - TF \ " TF 3
1 2 g" g g
Zymg = 2-Bg-(Tg - dnamg) + Awebg.( b Ty ~ dnamg ) + Afjag| Dy - - Tg ~ dnamg )
o , 1 2 Dy - TFy TFy \
Zymx= E'Bx'(Tx - dnamx) + Ayebx + Ty - dnamx) + Aflax| Dx = T + Ty - dnamx)
ZpMg = Zimgt Zomg ZpMix = Z1mxt Zoms

® Zpygg = 8.745in° Zpyy = 12.874in°

¢




o
Get plastic section modulus at suppott, Zps:
Ay = 9.417in° | Ay = 10.496in°
pltg = .417in ) pltx = .49 in
® .2 ' .2
Aflag = 0-847in Agpax = 0.808in
Both cases have Aplt > Afla so they cottespond to regime 1 in Table 4:
' d 1 (T N Aﬂag\ d 1 [T 4 Aﬂax\
nasg — 5| 'g nasx = 5| 'x
PS _ ‘ 2 By | 2 By
1 2 1 2
Zygg = E'B “dhasg Zisx = E'B ‘dhasx
1 ) 2 . 1 2
Zng = E.Bg.(Tg - dnasg) Zyy = E'Bx'(Tx _ dnasx)
® . TF, \ TF, \
Z3ksg = Aﬂag' Dg + Tg T, T dnasg ) Z35x = Aflax| Dx+ Tx — T dnasx)
Zpgg = Z1sg + Zogg + Z35o Zpgy = Zisx t Zogx + L3y
)  Zpg, = 5.855in° Zpg, = 7.608in>
PSg = 2-8>°1n pSx = 7-608in
Plastic Flow Sttess / Dynamic Yield stress
_ (Gyms + c‘ten_ms) ) (Gyhs + Gten_hs)
Odym = 5 Sgyh =TT
L
4 4 .
Sdym =4.6x 10 psi Sdyh =6.05x 10 psi
Ductility Factors ‘ ,
(11 per ship specifications, u2 for max deflection without rupture)
, ‘ -~
o py=15 Bo =2( )
Maximum beam resistance
8o
8o dym
dym = Zpg,+ Z
o g
) 4
Rpg = 5.597x ]04lbf Rpx =8.324x-10 1bf




Ry = 2.49x 10° newton

Natural period of stiffeners

Mig = (Bg T + Ag)Ly P s My = (By Ty + ALy P s
Mtg =304.991b My, =323.017b
- 307Eel | 307Epely
kebarg = 3 kebarx = 3 forp>1
L, L,
7 b 7 1b
Kobarg = 2578 10— Kebary = 6.71 10—
sec sec
K = 0.6¢ forp>1
05 . 0.5
KpmMig ) ' KpmMix )
Tpg = 27| —— oy = 2| ————
kebarg ) kebarx )
Tpg = 0.018sec - T = 0.011sec
For single pulse loading case, required resistance:
T 2py -1 T 2:pg -1
ng 0.5 1 nx 0.5 1
Fip=—{2p -1 + = = Fi,=—(2 1 + — =
lg: T ( M1 ) T, \ Ix T ( 17 ) nx\
2-u1- 1+]07—2 A 2-;11- 1+]07—
T ) T )
T, 2y — 1
F, =_g(2p2 1)05+ e’ Ty 2py -1
4 . Fyyi=—(2:py — 1 —
Tt ng\ 2x ( 2 \
: 2}12 1+ 07—) ™ 21 07_"X
T 2 . )
P B, L ' Po-B L
Rl E2 Ry =6425x10°If - Ry = Ry1 = 8319x 10" Ibf
P¢B,L Py-ByL,
__S8°8 _ 4 87X _ 4
Ry = o Rypq = 1.455x 10" Ibf erx._T Rioy = 1.885x 10" Ibf

. 5
erg—2.858x 10" newton . 5 i
Rpx=3'702X 10" newton

Ry = 6473x 10" newton | Ry

Rr1x= 3.7x 105 newton

= 8.383x 104 newton




®
APPENDIX I: COMPARISON OF STIFFENED PANEL
CALCULATIONS
L 4
Units DDG - 51 Class DD(X)
T (PlateThickness) in 0.3438 0.4375
L (Frame Spacing) ft 8 : : 7.54
H (Deck Height) ft 9.13 9.99
Stiffeners per panel 3 4
. Stiffener Spacing ft 3.043 2.498
’ Static Failure Pressure (Moment
» |calculation) Pa 1.23E+04 1.67E+04
“E’ Dynamic Failure Préssure (Moment +
E strain rate effects) Pa 3.65E+04 4.93E+04
K Simply Supported Lower Bound
K (Johansen Yield Condition) Pa 2.83E+04 4 53E+04
-5 Simply Supported Upper Bound (Energy '
o |Method with Velocity Profile) Pa 2.83E+04 4.55E+04
. S |Fully Clamped Lower Bound (Statically
£ |Admissible Stress Field) Pa 3.78E+04 ] 6.12E+04
& [Fully Clamped Upper Bound (Energy
g Dissipation Method) Pa 5.66E+04 ) 9.10E+04
9 [|Partially Clamped (50%) (Energy .
£ |Method) Pa 4.25E+04 6.83E+04
f-:; DDS 100-7 (blast loading) Pa 1.57E+06 2.32E+06
. ® {DDS 100-9 (air blast/ nuclear)
e For Max Deflection w/o rupture] Pa 2.55E+07 __2.94E+07
For Ship Specifications Pa 5.75E+06 6.66E+06
" Static Faiture Pressure (Moment
g calculation) Pa 4,93E+04 1.04E+05
® |Dynamic Failure Pressure (Moment +
& |strain rate effects) Pa 1.46E+05 3.08E+05
" % Simply Supported Lower Bound .
' 2 (Johansen Yield Condition) Pa 1.80E+05 3.71E+05
g Simply Supported Upper Bound (Energy ’
S [Method with Velocity Profile) Pa 1.83E+05 3.76E+05
¥ |Fully Ciamped Lower Bound (Statically :
2 |Admissible Stress Field) Pa - 2.84E+05 5.94E+05
§ Fully Clamped Upper Bound (Energy
& |Dissipation Method) . Pa 3.65E+05 7.53E+05
§ Partially Clamped (50%) (Energy :
. 2 [Method) - Pa 2.74E+05 5.65E+05
& |DDS 100-7 (blast loading) Pa 2.48E+06 4.53E+06
& {DDS 100-9 (air blast / nuclear)
& For Max Deflection w/o rupture] Pa 2.55E+07 2.94E+07
For Ship Specifications| Pa 5.75E+06 - 6.66E+06




